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Abstract 

In this paper we present a novel place 
recognition algorithm inspired by recent 
discoveries in human visual neuroscience. The 
algorithm combines intolerant but fast low 
resolution whole image matching with highly 
tolerant, sub-image patch matching processes. 
The approach does not require prior training 
and works on single images (although we use 
a cohort normalization score to exploit 
temporal frame information), alleviating the 
need for either a velocity signal or image 
sequence, differentiating it from current state 
of the art methods. We demonstrate the 
algorithm on the challenging Alderley sunny 
day – rainy night dataset, which has only been 
previously solved by integrating over 320 
frame long image sequences. The system is 
able to achieve 21.24% recall at 100% 
precision, matching drastically different day 
and night-time images of places while 
successfully rejecting match hypotheses 
between highly aliased images of different 
places. The results provide a new benchmark 
for single image, condition-invariant place 
recognition. 

1 Introduction1 

As camera technology has matured and dropped 
rapidly in price over the past decade, there has been a 
proliferation of vision-based robotic mapping and 
navigation algorithms including FAB-MAP [Cummins 
and Newman, 2009], MonoSLAM [Davison, et al., 
2007], FrameSLAM [Konolige and Agrawal, 2008], V-
GPS [Burschka and Hager, 2004], Mini-SLAM 
[Andreasson, et al., 2007], SeqSLAM [Milford, 2013, 
Milford and Wyeth, 2012] and others [Andreasson, et 
al., 2008, Paz, et al., 2008, Royer, et al., 2005, Zhang 
and Kleeman, 2009, Konolige, et al., 2008, Milford and 
Wyeth, 2008]. Many of these systems are capable  of 
mapping performance that rivals or exceeds range-
based systems, including mapping of routes as long as 
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1000 km [Cummins and Newman, 2009]. However, it 
is becoming increasingly apparent that vision-based 
approaches have at least one very significant 
disadvantage – their susceptibility to changing 
environmental conditions. If the many advantages of 
visual sensors - low cost, small size, passive sensing 
and low power consumption – are ever to be exploited 
on mobile robots and in personal navigation systems 
operating over long periods of time in real-world, 
unstructured environments, this challenge must be 
solved. Current vision-based approaches to the problem 
are limited by one or more significant restrictions such 
as requiring hand-picked training data [Johns and 
Yang, 2013, Sunderhauf, et al., 2013], camera motion 
information, or long image sequences [Milford and 
Wyeth, 2012]. 

 
Figure 1: Using single frames only, with no prior training, 
motion information or temporal filtering, the top-down, multi-
stage place recognition algorithm presented here is able to 
perform instantaneous place recognition between (a-b) very 
perceptually different images while also rejecting (c-d) 
incorrect matches between aliased image pairs. 

In this paper, we present a novel multi-step vision-
based place recognition system inspired by the recent 
discovery in human neuroscience [Rust and DiCarlo, 
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2010] that as visual information travels along the 
human visual cortical area, the brain simultaneously 
increases both its selectivity and matching tolerance or 
invariance. We extend this concept to the domain of 
place recognition, by implementing an initial low 
resolution, low tolerance whole image matcher 
followed by a higher resolution, highly tolerant patch 
matching stage. We test the system on the highly 
challenging Alderley dataset [Milford and Wyeth, 
2012], which comprises both sunny day-time and rainy 
night-time footage. The system is able to perform 
error-free single-image place recognition at a 21% 
recall rate, matching places that have undergone huge 
perceptual change while correctly rejecting 
perceptually similar but different places, especially 
similar night-night scenes (Figure 1). 

Because of the ambitious nature of the challenge, 
we make some significant assumptions about scope. 
The primary scope limitation is that we are only 
attempting to address the condition invariance problem 
and not the pose invariance problem. There is a large 
body of existing research on pose invariant recognition 
[Cummins and Newman, 2009, Davison, et al., 2007, 
Konolige and Agrawal, 2008, Klein and Murray, 2007] 
generally based on feature-based techniques like SIFT 
[Lowe, 2004] and SURF [Bay, et al., 2006], albeit in 
less challenging environmental conditions than shown 
in Figure 1, which has been shown to be difficult for 
conventional feature detectors [Milford and Wyeth, 
2012, Valgren and Lilienthal, 2007]. In the Discussion 
section, we describe potential ways in which we can 
expand the approach to provide varying degrees of 
pose invariance. Furthermore, the current system is 
purely a place learning and recognition system, and the 
rate of learning is fixed. Integrating it into an existing 
mapping framework such as RatSLAM [Milford and 
Wyeth, 2010] would provide mechanisms for bounding 
learning and producing a spatial map.  

The paper proceeds as follows. In Section 2 we 
review vision-based place recognition and mapping 
algorithms and detail recent attempts to improve their 
robustness to environmental change. Section 3 
describes the approach taken in this paper. In Section 4 
we describe the experimental setup, with results 
presented in Section 5. The paper concludes in 
Section 6 with discussion including future research 
areas. 

2 Background 

Vision-based place recognition is an integral 
component of many robotic mapping systems. After 
the initial drive towards mapping larger environments 
ever more accurately, attention has now turned towards 
dealing with the problem of dealing with 
environmental change. Current vision-only approaches 
generally fall into one or more of three different 
categories; approaches which attempt to learn how the 
appearance of an environment changes, approaches 
which use temporal filtering over long sequences of 
images, and approaches which attempt to develop 
condition-invariant features or image descriptors. 

To learn how the appearance of the environment 
changes, training data with established frame 

correspondences is required. [Sunderhauf, et al., 2013] 
presents an approach that learns systematic scene 
changes in order to improve performance on a seasonal 
change dataset. [Johns and Yang, 2013] builds a 
database of observed features over the course of a day 
and night. These current approaches have at least two 
significant limitations; they require appropriate training 
data for a particular environment, and learnt change 
information has not yet been show to generalize to 
different environments or different, unwitnessed types 
of change. 

Using more than a single image to form place 
recognition hypotheses reduces the requirements of the 
place matching algorithm; instead of reporting globally 
correct matches, the algorithm must only generally 
report matches that are significantly better than chance. 
This approach, used in SeqSLAM [Milford and Wyeth, 
2012] and follow up work [Johns and Yang, 2013, 
Sunderhauf, et al., 2013, Sunderhauf, et al., 2013] 
enables place recognition in challenging conditions 
including the dataset presented in this paper. The 
disadvantage is that quite long sequences (320 frames) 
were required to generate good (35% recall at 100% 
precision) performance. For non-constant robot speed 
applications, this long sequence requirement in turn 
requires either the use of velocity information, or a 
larger sequence match search space [Johns and Yang, 
2013] that allows for possible velocity changes, but 
leads to both greater computation time and the 
increased risk of finding false positives.  

Finally, attempts to generate truly invariant feature 
detectors have met with limited success. SIFT [Lowe, 
2004], SURF [Bay, et al., 2006] and a number of 
subsequent feature detectors have been demonstrated to 
display a significant degree of pose invariance but only 
a limited degree of condition-invariance (illumination, 
atmospheric conditions, shadows, seasons) far less than 
that shown in Figure 1. 

In this paper, we attempt to fill a capability gap by 
providing a training-free method that can match single 
images and does not require velocity information. 

3 Approach 

This section describes the place recognition 
components, overviewed in Figure 2. A camera image 
is compared to all stored images, first at a whole image 
matching stage, then at a patch matching stage, with 
the output evaluated using a patch shift coherency 
calculation. 

 
Figure 2: System architecture. A camera image is compared to 
stored images firstly at a whole image level, then at a patch-
based level and finally at a patch-shift coherence level. 
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3.1 Whole Image Place Recognition 

Camera images are resolution reduced (64×32 pixels) 
then patch normalized (all pixels). Patch normalized 
pixel intensities, I', are given by: 
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where μxy and σxy are the mean and standard deviation 
of pixel values in the patch of size Psize that (x, y) is 
located within. Mean image differences between the 
current image and all stored images are calculated 
using a normalized sum of intensity differences, 
performed over a range of horizontal and vertical 
offsets: 
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where σ is the template offset range, and g( ) is given 
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where s is the area in pixels of the template sub frame. 
The range of horizontal and vertical offsets provides 
some invariance to camera pose. 

In this implementation, we simply add new images 
to the library of stored images at a fixed rate (1 every 2 
frames, corresponding to a maximum inter-frame 
separation of 1.1 metres for presented dataset. 

3.2 Cohort-based Normalization 

The vector of difference scores output by Equation 2 is 
normalized twice. Firstly, the difference score matches 
between the current camera frame and all stored frames 
are normalized as follows: 
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D
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where Di is the original difference score for the match 
between the current frame and the ith frame.  

The second normalization is based on the standard 
speaker recognition and computer vision technique of 
normalizing scores by cohort [Furui, 1997, Aggarwal, 
et al., 2008, Tulyakov, et al., 2008]. We use a modified 
version that uses video frame time-stamps to normalize 
different scores by time. Datasets are “chunked” into r 
temporally contiguous frame groups. Each difference 
score D is then normalized as follows: 
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where Dij is the ith difference score within the jth dataset 
chunk. As a point of clarification, cohort normalization 
only uses past camera frames so the method is real-
time capable – “future” frame information is not used. 

Finally, to stop the system matching the current 
frame to the immediately preceding frame, we truncate 
cohort normalization and place matching l frames from 

the current frame. In a full SLAM system, this same 
outcome would be achieved using odometry and a 
particle cloud; in our place recognition-only system, 
the implication is that the system is unable to match the 
current place to itself. 

3.3 Sub-Image Patch Matching 

Whole image matching performance on low resolution 
images degrades significantly when perceptual change 
becomes large enough (such as over day-night cycles), 
which is why previous work has focused on matching 
using long sequences of images [Milford and Wyeth, 
2012]. The novel patch verification process presented 
here is performed on images from the Z top ranked 
place match hypotheses proposed by the whole image 
matcher described in the previous section. Small image 
patches at corresponding locations in the two images 
(see Figure 3) are compared using a sum of absolute 
differences calculation similar to that described in 
Equations 2 and 3. Comparisons are performed over a 
sliding window centred on the patch location, but 
extending in both vertical and horizontal directions. 
However, rather than just finding the maximal patch 
match and its associated offsets, the entire set of 
difference scores for each patch comparison are used to 
create a difference score ratio grat: 

 2

1

g

g
g rat   (6) 

where g1 is the difference score for the best matching 
patch offset and g2 is the score for the next best 
matching offset located outside a range of rpeak from the 
first score. A count of patch matches with difference 
score ratios exceeding a minimum score requirement 
gm (value given in Table 1) produces an overall patch 
match count q: 

 
  mrat ggq  (7) 

Examples of patch matches meeting the quality 
requirements are shown in the Section 5. 

 
Figure 3: Patch verification involves comparing (a) small 
patches at (b) corresponding locations in a proposed matching 
image over a local sliding window [-a, a]. 

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia



3.4 Patch Shift Coherency 

To further evaluate the place match likelihood, a 
coherency check is performed on the reported shift 
offsets for the q matching patches meeting the quality 
requirement set in Section 3.3. The horizontal and 
vertical shifts are binned in a two-dimensional 
histogram H which is then smoothed using a moving 
summation window of radius srng (see Figure 4). We 
define two shift coherency metrics, the peak shift 
count c: 

 
)max(Hc  (8) 

and the peak-mean ratio rpm: 

 H

c
rpm   (9) 

The peak shift count provides an absolute measure of 
the number of spatially coherent patch matches, while 
the peak-mean ratio provides a patch consensus 
measure independent of the total patch match count. 

 
Figure 4: (a) Patch shift coherency verification involves 
creating a 2D histogram of the spatial shifts for patch matches, 
from which coherency metrics are calculated. 

4 Experimental Setup 

This section describes the experimental environment, 
dataset acquisition and pre-processing, ground truth 
creation and key parameter values. 

4.1 Camera Equipment 

A Panasonic Lumix DMC-TZ7 digital snapshot camera 
was mounted forward facing on the car dashboard, 
recording 720p video at a frame rate of 25 frames per 
second. The video was cropped as shown in Fig. 5. Due 
to heavy rain, the resulting video stream had significant 
and constant visual artefacts due to water streaming 
down the windscreen, windscreen wipers, compression 
artefacts and poor night-time illumination. 

 
Figure 5: (a) Video acquisition for the Alderley dataset. A 
forward facing Panasonic Lumix DMC-TZ7 camera captured 
720p video at 25 frames per second through the windshield. 
Images were cropped to remove the main dashboard areas. 

4.2 Alderley Dataset 

The Alderley dataset comprises two 8 km journeys 
over the same route through the suburb of Alderley in 
Brisbane, Australia (Fig. 6). The first run was gathered 
in the middle of the night during a severe storm with 
very heavy rain and low visibility. The second run was 
gathered during a bright clear morning. The car’s 
velocity was typically between 45 and 60 km/hr 
throughout the dataset except when slowing down to 
stop due to traffic. 

 
Figure 6: Aerial photo and camera path for the Alderley dataset. 
An 8 km long route was traversed twice, once during sunny 
day-time conditions and once during heavy rain at night. 

4.3 Ground Truth 

GPS was not gathered during acquisition of the 
Alderley dataset. Consequently, to obtain ground truth, 
the videos were manually parsed frame by frame to 
pick key frame correspondences. Points were selected 
based on video frames that showed prominent, 
unambiguous features and were more densely sampled 
around transition points (such as the car stopping and 
starting at traffic lights). 93 locations were tagged in 
the two Alderley datasets. The manually selected frame 
pairs can be considered correct to within 5 frames in 
the original 25 fps video, corresponding to a maximum 
ground truth error (at 60 km/hr) of approximately 3 
metres. 

4.4 Image Pre-Processing 

Image contrast enhancement was performed on the 
day- and night-time road datasets (although the day 
dataset did not “need” image enhancement, the same 
enhancement was applied for the purposes of 
consistency). Many consumer cameras, including the 
ones used in this experiment, capture video in YV12 
format (chroma sampling scheme 4:2:0), which 
provides a useful 12 bits of intensity information per 
pixel, while sacrificing color representation. Often this 
extra intensity information is lost in a standard 
processing chain, but we applied brightening and 
histogram equalization to the original YV12 format 
images before converting them into standard grayscale 
images for use by the place recognition and visual 
odometry algorithms. These images were then down 
sampled to the resolutions required by each place 
recognition module and then patch normalized (Fig. 7). 
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Images were processed at a rate of 15 Hz by the 
place recognition algorithms and a simple no-motion 
detector (based on image change) was used to pause 
processing at extended stoppages at traffic lights, as in 
the original SeqSLAM study. The day dataset was 
processed first, meaning the place recognition 
algorithm was required to match night-time images 
back to day-time images and avoid incorrectly 
matching night-time images to night-time images. 

 
Figure 7: (a) Raw YV12 camera frames with 12 bits of intensity 
information per pixel were (b) histogram equalized then 
resolution reduced and (c) patch normalized to produce the 
input images for both the whole image and patch-based place 
recognition algorithms. 

4.5 Parameter Values 

Parameter values are given in Table I: 

TABLE I 
PARAMETER LIST 

Parameter Value Description 

Rx,Ry 64,32 Whole image matching resolution 

Rx,Ry 320,130 
Patch-normalized image resolution for 
patch verification 

fjump 
2 frames 

(1.1 metres max)
Frame learning rate  

Z 5 top matches 
Number of place match hypotheses 
evaluated by the patch verification 
process 

w 40×40 pixels Patch size for patch verification
a 5 pixels Patch verification local search range

rpeak 2 pixels 
Patch quality score peak search exclusion 
zone 

gm 1.125 
Minimum difference score ratio for an 
accepted patch match 

l 75 frames 
Recently visited place matching 
exclusion zone 

Srng 1 pixel 
Sliding summation window radius for 
patch shift histogram 

5 Results 

In this section we present precision-recall curves and 
ground truth plots and compare performance to a whole 
image-only approach and the SeqSLAM algorithm. We 
also present patch matches and patch shift coherency 
histograms for both accepted and rejected place 
matches that illustrate how the system works. A video 
accompaniment to this paper further demonstrates the 
methodology and results. 

5.1 Precision-Recall Curves 

Figure 9 shows the precision-recall curves with (solid 
blue line) and without (dashed red line, whole image 
only matching) patch verification. These curves were 
generated with a false positive distance threshold of 13 
metres, which is a third of the 40 metre distance used 
in the original SeqSLAM study.  
Due to the perceptual difficulty of the dataset, the low 
resolution, whole image matching technique is never 
able to achieve 100% precision at any recall level, 

 
Figure 8: Ground truth plot at 100% precision and 21.24% recall, with inset from the 2012 SeqSLAM [Milford and Wyeth, 2012] results at 100% 
precision. The vertical axis represents stored frames from the initial day-time run (0 – 14500) and night-time run (14500 – ~31000). Qualitatively the 
environmental coverage is much more consistent, with the largest place recognition gap being approximately 280 metres, compared with 
approximately 1400 m in the original result. The solid black circle in the inset represents the starting location, with the route traversed in an anti-
clockwise direction. 
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peaking at approximately 93.6% precision. In contrast, 
the top-down method achieves 100% precision up to a 
maximum recall rate of 21.2%, and then drops to 
38.5% recall and precision. The top-down method is 
able to achieve higher absolute recall levels because it 
is able to discard incorrect but top-ranked place match 
candidates output by the whole image matcher and 
instead confirm lower ranked but correct whole image 
match candidates. As can be seen in the attached video 
and the results figures, the dataset is extremely 
challenging and we would argue that even a human 
exploiting semantic information would find it difficult 
to achieve a high level of recall at 100% precision. 

 
Figure 9: Precision-recall curves for the whole image matching 
and top-down matching method presented here. The patch 
verification step results in a significant improvement in 
precision-recall performance at precision levels. Perhaps 
unsurprisingly given the nature of the dataset, single frame-
based whole image matching is incapable of reaching 100% 
precision at any recall level. 

5.2 Place Recognition Distribution 

Figure 8 shows the distribution of patch-verified place 
recognition hypotheses (red hollow circles) for a 
precision level of 100% and recall rate of 21.24%. The 
small cyan dots indicate the 5 top ranking place match 
hypotheses after the initial whole image matching 
stage, with the solid dark blue line indicating ground 
truth. The inset shows the distribution of place matches 
in the original SeqSLAM implementation at 100% 
precision. Although the overall recall rate of our 
current approach is lower (21% versus 35% recall), 
qualitatively the environmental coverage is much more 
even, a desirable characteristic for robot mapping 
systems [Cummins and Newman, 2009]. The longest 
segment of no reported matches is approximately 280 
metres, versus approximately 1400 metres in the 
SeqSLAM result. 

5.3 Sample Place Matches 

Figures 10 to 13 show sample place matches and 
rejected place matches for the system operating at 
100% precision and 21.24% recall. One of the more 
challenging successful place matches is shown in 
Figure 10. Despite vastly different perceptual 
conditions, and the movement of some vehicles, the 
algorithm is able to find a large number of high quality 
patch matches. The smoothed histogram of patch 
match shifts (Figure 10f) is highly coherent with a peak 
matching score of 15.  

In contrast, Figure 11 shows two perceptually 
similar images of different places that were matched by 

the initial whole image matcher. The patch verification 
process finds a significant number of patch matches 
exceeding the minimum difference score ratio 
threshold, but the shift histogram is less coherent than 
in Figure 10f, with a maximum matching score of only 
10. We have handpicked this example since it was one 
of the most challenging – at higher recall rates, this 
place match is one of the first to be incorrectly 
accepted. 

Figures 12 and 13 show two of the five place 
matches output by the whole image matching process 
for the place shown in the night image (Figure 12b and 
13b are the same place). The patch matcher finds a 
large number of matches in both cases, but after 
histogram binning the matching score for the match in 
Figure 12 ends up highest (20 versus 13), and hence the 
image shown in Figure 12a was chosen as the best 
match. However, even the second best patch verified 
match has a higher matching score than the highly 
aliased match shown in Figure 11, demonstrating the 
advantages of verifying multiple place match 
hypotheses from the whole image matching stage. 

5.4 Compute 

The algorithms are currently primarily implemented in 
Matlab and are not capable of processing images at 
real-time speed e.g. 15 frames per second. The primary 
computational load is due to the initial whole image 
matching process followed by the patch verification 
process. The calculation below gives the approximate 
computational requirements for these operations at the 
end of the dataset used in this paper: 

Whole Image Comparisons 

64 pixels × 32 pixels × 3 xshift × 3 yshift× 
13576 frames × 15 fps = 3.8× 109 pixel comparisons/s  

Patch Verification 

40 pixels × 40 pixels × 10 xshift × 10 yshift× 
14 patches across × 5 patches down × 15 fps × 5 
candidates/comparison = 8.4 × 108 comparisons/s  

At least a one-to-one ratio between 8 bit pixel 
comparisons and nominal computer clock speed is 
usually achievable using just the CPU, suggesting that 
simply porting the algorithms to C code should render 
them close to real-time for datasets of this size on a 
modern PC, without resorting to GPU-based 
computation.  

The compute growth of calculating low resolution 
image matches is already detailed in [Milford, 2013]. 
Compute scales linearly with the number of images 
stored and the square of the degree of pose invariance 
that is required by the matching process.  

To obtain further computational speed-ups, we are 
currently examining several possibilities: the use of a 
hierarchical spatial pyramid, where only a fraction of 
promising image matches at each resolution are then 
verified at a higher resolution; the use of human-
inspired saliency measures, in order to identify and 
compute only the most salient image regions; and 
finally use of specialist hardware such as GPU 
computation. 
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Figure 10: One of the more challenging place matches correctly identified by the system. (a-b) Original images. (c-d) Patch normalized images with 
black rectangles indicating the patch matches exceeding the quality threshold, with patches shown in (e). (f) The smoothed 2D histogram of patch 
match shifts. The overall matching score for this image was 15. 

 
Figure 11: Two highly aliased but spatially separate places that were matched by the whole image matcher but then successfully rejected by the 
patch verification method. The matching score for this image pair was 11. As well as having a lower absolute value, the histogram peak is less 
sharply defined than for the other correct matches presented in here. We note that this image pair was one of the most challenging to reject – most 
incorrect image pair candidates output by the whole image matcher resulted in far lower matching scores and evenly distributed histograms. 
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Figure 12: These two images were successfully matched with a matching score of 20. (a, c) This image was one of five candidate image matches for 
the (b, d) image on the right, and resulted in the highest matching score. 

 
Figure 13: (a, c) This image was one of the other candidate matches for the (b, d) image on the right, which is the same as that shown in Figure 12b. 
Although the system had already found a successful match, it was able to find this secondary correct match as well, with a matching score of 13 
which is higher than that of highly aliased places such as shown in Figure 11. 
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6 Discussion and Future Work 

In this paper we have presented a novel top-down, 
multi-step visual place recognition system. The overall 
matching process is inspired by the increasingly 
selective and tolerant processing stream in the human 
brain; the low tolerance initial matching stage outputs a 
small number of candidate match hypotheses, which 
are then verified or rejected by a highly tolerant patch-
based matching method. Results on a challenging 
dataset demonstrate that the method is capable of 
producing comparable performance to the current 
sequence-based state of the art algorithm, but without 
requiring sequences. Although we do not yet have 
comprehensive results, parameter sweeps over 
multiple, different datasets suggest that similar 
parameter values will provide optimal performance 
across multiple datasets, and that the system is not 
overly specializing on the dataset presented in this 
paper.  

The patch verification approach improves 
matching performance so drastically because, 
somewhat like other verification techniques such as 
geometric verification [Cummins and Newman, 2009], 
it detects the small number of false positive matches 
reported by the low resolution whole image matcher 
and simultaneously finds a larger number of true 
positives. Although we did not investigate it here, it 
may be feasible in future to parallelize the patch 
verification process and perform it on all possible place 
matches output by the initial matching stage, rather 
than just the top few candidates.  

We have focused almost entirely on the problem of 
condition invariance. Future work will investigate how 
to provide a higher degree of pose invariance, a task 
that traditional feature-based recognition methods excel 
at. Researchers have shown that whole image-based 
image comparison can degrade gracefully as camera 
pose changes, especially when using panoramic images 
[Sturzl and Zeil, 2007], suggesting that the problem 
could be partially addressed simply by expanding the 
number of candidate matches output by the whole 
image matcher, at the cost of increased computational 
load. At the patch verification level, drawing upon 
techniques used in related fields such as face 
recognition may also help. Introducing a deformable 
graph (rather than the current rigid grid) over which 
patch matching is performed, it may be possible to 
achieve significantly greater degrees of pose 
invariance.  

We speculate that the place recognition 
performance achieved here is, at least within this very 
specific, constrained task, starting to enter the ballpark 
of human capability. We are examining how to 
compare, on an even playing field, human and 
algorithmic performance on this task. 

The presented method can likely be improved by 
the addition of motion information, temporal filtering 
over image sequences and prior training, and many 
researchers are currently developing these techniques. 
However, we believe it is also important to keep 
pushing the boundaries of what can be achieved in a 
“pure” vision-based place recognition sense, and hope 

that the results presented here spur further interest in 
this challenge. 
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