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Abstract— Challenges for face recognition still exist in factors
such as pose, blur and distance. Many current datasets con-
taining mostly frontal images are regarded as being too easy.
With obviously unsolved problems researchers are in need of
datasets that test these remaining challenges. There are quite a
few datasets in existence to study pose. Datasets to study blur
and distance are almost non-existent. Datasets allowing for the
study of these variables would prove to be useful to researchers
in biometric surveillance applications. However, until now there
has been no effective way to create datasets that encompass
these three variables in a controlled fashion.

Toolsets exist for testing algorithms, but not systems. Design-
ing and creating toolsets to produce a well controlled dataset or
to test the full end-to-end recognition system is not trivial. While
the use of real subjects may produce the most realistic dataset,
it is not always a practical solution and it limits repeatability
making the comparison of systems impractical. This paper
attempts to address the dataset issue in two ways. The foremost
is to introduce a new toolset that allows for the manipulation
and capture of synthetic data. With this toolset researchers
can not only generate their own datasets, they can do so in
real environments to better approximate operational scenarios.
Secondly, we provide challenge datasets generated from our
validated framework as a first set of data for other researchers.
These datasets allow for the study of blur, pose and distance.
Overall, this work provides researchers with a new ability to
evaluate entire face recognition systems from image acquisition
to recognition scores.

I. INTRODUCTION

Recognition of human faces is no different from any
other complex problem. The general problem has been
divided into many smaller problems such as face and feature
detection, blur mitigation, pose estimation, and matching
algorithms. Researchers constrain these problems even fur-
ther. For instance, a recognition core can be tested using
images and ground-truth of all the feature points necessary
for the algorithm. While this is useful to initially design
the algorithm, the constraints allow the designer of the
algorithm to assume that perfect feature points will always
be supplied. Thus when a recognition core is coupled with a
feature detector it may not perform as intended because the
detector’s interpretation of good feature points is completely
different.

With current advancements in facial recognition algo-
rithms, combining multiple solutions for individual smaller
problems and usefully applying them to real world scenarios
is slowly becoming a reality. Datasets and evaluation tools
are an important element in advancing to this goal. While
many good datasets exist, Pinto et al. [17] brings to light
that some of the popular face datasets, such as LFW [11],
may not accurately simulate operational scenarios that a real

recognition system would be exposed to. They point out
that apparent improvement in algorithms could be due to
accidentally exploiting irrelevant image characteristics in a
given dataset.

Using a relatively simple algorithm, described as “V1-
like”, Pinto et al. were able to achieve comparable or even
better performance compared with complex algorithms. Their
work shows that there is a need to design datasets that are
closer to operational scenarios. They suggest that a trivial
algorithm establishes a baseline that other algorithms can
attempt to improve upon. By using a “simple” recognition
core, such as their “V1-like” implementation, datasets can be
evaluated for the presence of low-level regularities to prove
if they provided a significant enough challenge to algorithm
developers. Synthetic data is also suggested as a way to
create a more realistic set of data because of its flexibility.

Datasets alone cannot address many important dimensions
of face-system recognition. Pose, blur and distance are some
of the variables that a system may need to handle when
recognizing a subject in an unconstrained or surveillance
setting. Consider an attempt to recognize people in these
types of applications. Obtaining imagery of uncooperative
subjects may not always yield the best pose — the subject may
be in motion under low light and changing the vantage point
is not always option. Thus, the ability to recognize a face
under any pose at a distance with blur becomes a necessity.
In a maritime environment, the problem of our sponsor,
both atmospheric and motion blur impact recognition results.
Atmospheric blur will always be a problem during the day
— especially in warmer weather. Motion blur is amplified by
the fact the subject may be on a vessel that could be moving
in almost any direction due to the ocean. Since there is no
way to control either type of blur, it leads to challenges in
how to evaluate systems for such an environment.

In order to improve face recognition algorithms with
respect to these variables one must collect a dataset that
allows for the study of how they truly effect recognition. Due
to a lack of long distance datasets there are not many ways
for researchers to evaluate how long ranges effect recognition
cores. Currently only one dataset with real subjects has been
created by Yao et al. [23] — and it is not publicly available.
Auvailable sources of data for blur are also lacking. Pavlovic
et al. [15] have resorted to using point spread functions (PSF)
to synthetically generate models of blur to study.

On the other hand, for pose, we find quite a few datasets.
PIE [19] & Multi-PIE[8] are most commonly used to evalu-
ate pose. FERET [16] is also used though its pose variance



is limited. Even with the large amount of research into this
variable, multiple surveys [24], [20], [25] have concluded
that pose variation is still one of the major unsolved problems
for face recognition. Kroon et al. [13] also draws a similar
conclusion, namely that because most algorithms are de-
signed for only frontal poses, recognition in an unconstrained
environment proves to be a non-trivial problem.

50 of the 200 models in the dataset found in [3] were used
by Levine et al. [14] as a dataset to evaluate algorithms on
pose. One thing to note about the study is that it also included
analysis of expression and illumination in addition to pose.
For expression and illumination they used the PIE and Yale
[7] datasets respectively. We note that it is interesting that
they chose to use a semi-synthetic dataset even though they
were already using a dataset that contained subsets of pose
variance. They use this data to simulate the method described
in their work of capturing real subjects using a video camera.
The real subjects turn their heads at different vertical tilts,
while being recorded, to gain a large sample of poses. This
is designed to eliminate the need for simultaneous multiple
camera capture for every desired pose, as was done in
datasets such as PIE. While we are not disputing the validity
of the method they propose, choosing to use synthetic data
over real subjects shows how it is a more flexible medium
that allows for a finer degree of control over experiments.

Attempting to gather imagery in operational settings is not
an easy task and introduces additional problems. The obvious
problem is that placing cameras in multiple locations at long
ranges and at the same distance from the subject would be
harder and more expensive than an indoor short range setup.
Not only would you need more sets of expensive equipment
but setting it up at equal distances from the subject and at
the same line of sight angle would be another obstacle. Even
if cost is not an object, dealing with the synchronization of
all the cameras over a wireless network would be difficult
due to delay and packet loss. More importantly it does not
allow researchers optimum control over their experiments,
because it will be hard to decouple pose and blur from
each other. Thus the question this paper aims to solve is not
pose, blur or distance specifically, nor is it to evaluate the
specific effectiveness of algorithms when dealing with these
variables. Rather we want to solve the problem of being able
to create datasets that allow researchers to effectively study
pose and blur at distance.

Previous works in this area have been helpful, but they
don’t address our motivating problem — to be able to evaluate
face data at statistically significant levels in a maritime
environment. Using real subjects is difficult even in simple
uncontrolled indoor settings. Adding distance, weather, water
and boats into the mix and the number of samples needed to
draw a significant conclusion quickly becomes intractable.
Add the issue of trying to get people on/off a boat to do
a collection and it becomes clear that creating a traditional
dataset in a maritime setting is impractical. Synthetic datasets
offer an appealing solution to this problem. Large numbers
of models can be generated which addresses the statistically
significant size dilemma. The models can be displayed in an

exact repeatable manner, which makes each created dataset
controlled except for environmental changes.

We propose using the synthetic data framework created
in our previous work [12] where we generated a guided-
synthetic set of 3D models. As opposed to semi-synthetic
data, models from guided synthetic data use properties of an
individual to create a model but it is not a direct re-rendering
of the person like that of a facial scan or image. Instead
a guided model uses the properties of an image/scan to
generate the shape and texture of the model. This potentially
results in better models than the one produced by a scan.
A system defined by Blanz et al. [3] created semi-synthetic
3D heads from facial scans. The dataset also had the ability
to change illumination and expressions of the models in
addition to pose. Iyer et al. [12] define a taxonomy for
classifying types of synthetic face data and their relation
to experimental control. They define semi-synthetic as a re-
rendering of real data such as a facial scan or a 2D image.

With this guided-synthetic method we have created two
outdoor long range datasets of pose and blur as well as
a screenshot dataset of pose. It is our intention to provide
the toolkit and associated datasets presented in the following
sections of this paper to the biometric community. The 3D
models and the program used to display them are available
from the authors . This paper validates this approach, and
we are now building hundreds of 3D models to be used in
a real maritime collection.

This paper is organized as follows. In Section II we discuss
previous work using the photohead concept. In Section III
we describe the new datasets we have collected with the
photohead methodology. Experiments on the new datasets
are discussed in I'V. Finally we conclude and discuss how to
obtain the dataset in Section V.

II. PREVIOUS SYNTHETIC DATA WORK

Pinto et al. [17] conducted pose variation tests using
unverified 3D models created using the commercial soft-
ware package FaceGen, produced by Singular Inversions
(http://www.facegen.com/). As stated before their results on
LFW [11] were comparable to more advanced algorithms.
Running the same algorithm on the generated models, which
were considered to be much simpler, their results quickly
dropped to around 50 percent as pose variance was increased.

Our previous work in [12] expanded on the original
concept of photoheads created by Boult et al. [5], [4]. The
original concept re-imaged pictures from the FERET [16]
dataset on a waterproof LCD panel mounted outside on a
roof. Two cameras were mounted at 94ft and 182ft from
the panel to capture images of the screen. Since it was a
permanent setup it allowed for data capture at different times
of day and weather over long periods of time.

In the new setup described in [12] we defined classi-
fications for synthetic data and expanded on the overall
concept. Our redesigned setup uses a high powered projector
instead of an LCD. Instead of re-imaging pictures, we created
guided-synthetic 3D models based on the PIE dataset. Since
the display of the new apparatus was not weatherproof and



we did not have a permanent display area we could not gather
the same types of long-term data as the photoheads described
in [5], [4]. However with better imaging equipment we were
able to create a frontal dataset of the guided-synthetic models
re-imaged from 214 meters.

While the photohead method potentially introduces new
covariates, the results from using an LCD in [5] and our
most recent work with the projector in [12] show that any
new covariates introduced do not affect recognition scores
for the algorithms tested. While removing some covariates
is a goal of photoheads that is not the only motivation for
using synthetic data. Collecting datasets with a large number
of subjects, which is not a feasible task using real humans,
becomes possible with the use of synthetic data. The main
reason however that one would want to use photoheads is
to be able to conduct the same experiment in a repeatable
fashion. Even if the re-imaging process of photoheads is
adding covariates, it will always add these covariates thus
creating a controlled repeatable experiment.

Going one step further than similar synthetic datasets
such as [3], [10] we also validated that our models were
equivalent to the 2D images of the subjects used to create
them. This is important as many researchers will attempt to
invalidate results solely based on the fact the experiments
were conducted using synthetic data. To do this we followed
a procedure similar to [4], consisting of “self-matching at
a distance” tests that matched the same image from the
FERET dataset back to a re-imaged version taken 15ft away.
However, our test for the 3D models was not exact self-
matching, as the images were not the same. Instead we
used three frontal gallery images of the same people not
used to generate the models. In this way we ensured the
recognition algorithms were not simply matching the texture
back to the picture. Since the models are based on a well
known dataset, validating the models allows us to compare
the guided-synthetic data to our collected data.

ITII. TOOLKIT & DATASETS

For both blur and pose datasets, we used the 3D
models generated and tested in our previous work [12].
One set of models was created using the Forensica
Profiler software package from Animetrics, Inc. (see
http://www.animetrics.com/products/Forensica.php). We also
tested another software package, FaceGen which was used
by Pinto et al. for their experiments in [17]. Both software
packages were given a single frontal and profile image to
generate the model with. FaceGen has the user manually
adjust key feature points on the images provided. The
software from Animetrics takes tries to map a set of major
and minor feature points to the image. These points can
then be manually adjusted by the user. Using these points,
both software packages generate 3D points and a texture
that can be saved in a WaveFront Object file format. As
stated in Section II the models were generated from images
out of the PIE dataset. Recognition results on screenshots
from both packages allowed us to determine that the software
package from Animetrics generated a more accurate model

Data Set Distance | Poses | Subjects | Total Images.
PIE Pose Screenshot | NA 13 68 884

PIE Pose Distance 214 13 68 883

Blur Set 214 1 67 67

TABLE 1. The Pose Screenshot and Distance databases contain 68 subjects
in 13 different poses at a distance of 214 Meters. The Pose Distance dataset
is missing one image from view C22. The Blur set is missing one of the
68 models as well.

from a statistical standpoint. Also stated in Section II we
used a gallery of three photos from the real PIE dataset and
a single screenshot as the probe. Using this testing protocol
Animetrics models were able to achieve 100% recognition
rate. On the other hand FaceGen was only able to achieve
a recognition rate of 47.76%. The experiments conducted in
this paper use the Animetrics model set.

We created both re-imaged long distance datasets and
a screenshot dataset. The screenshot dataset was taken
while running our custom display software which leverages
OpenGL to render the models. These were taken at a
resolution of 1900x1080. For imaging the long distance sets
we used a Canon EOS 7D. A Sigma 800mm F5.6 EX APO
DG HSM lens and 2X adapter is attached to the camera.
Images from the camera were saved in the proprietary Canon
CR2 format at a resolution of 5194 x 3457. The models were
displayed in a specially designed display box running our
display software at 214 meters away. The system used a 4000
lumen BENQ SP820 4000 projector, displayed at a resolution
of 1024x768 with a refresh rate of 85Hz, approximately 18in
from the screen.

A. POSE DATASET

In a synthetic environment we have nearly infinite pose
configurations. However, this is not very useful unless we
validate our models to be equivalent to different poses of
their human counterparts. In order to validate the guided-
synthetic pose set, comparison to similar human poses was
necessary. The logical choice was to re-create the PIE set
they were modeled after in synthetic form since the set itself
has multiple poses in which the models can be validated
against. Using all angles documented by Gross et al. [9],
except for pose CO7 (refer to Figure 1 for angles used), we
created our own guided-synthetic version of the PIE dataset.
We did not use C07’s documented angles because when used
in the rendering program it did not change pose variance
when compared to C27. Instead we estimated the angle by
slowly varying the pose until it looked close to the original
PIE picture angle.

Like the PIE dataset each set created has 68 subjects
imaged at 13 poses. Two sets of pose were generated. The
first consisted of screenshots of the models in each of the 13
poses. This set was used mainly to validate the ability of the
models to accurately reproduce the pose of the subjects. The
second was of all the poses re-imaged at 214 meters. Note
for the distance pose set we are missing one image from
pose C22(see Figure 1). Set statistics can be seen in Table I
and examples of each of the 13 poses from the set captured
at 214 meters can be seen in Figure 1
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This figure shows all of the 13 poses captured in the long distance pose set. The vertical and horizontal orientation of the faces are labeled in

each image. The camera names from the original PIE database are used to allow easier comparison between datasets

Fig. 2. The shaker table moves the leg of the tripod to cause varying
degrees of blur depending on its speed. This type of motion blur is relevant
to operational settings as it could be caused by someone walking close to the
capture setup causing vibrations. This produces motion blur in the captured
images.

B. BLUR DATASET

In the maritime environment we expect significant motion
blur. Before testing in that environment we wanted a chal-
lenge set with blur, some controls, and the ability to validate
performance. Creating a blur set proved to be more of a
challenge than initially expected. Our first idea was to use
the photohead program’s ability to animate the head as a
way to create motion blur. However, because the screen’s
refresh rate was too high no motion blur was picked up by
the camera or human eye. The second idea was to create a
fake blur within the program using OpenGL texture tricks
that create the illusion of blur on the screen. We did not
pursue this idea as it became apparent that it would only
create pure synthetic blur for us to re-capture. Our goal was
to capture real blur.

Finally we decided to actually cause motion in the cap-

ture setup itself. Using a “shaker table”, used for shaking
elements in a chemistry lab, we tried making one of the
endpoints of the apparatus have motion. The display end
could not be moved fast enough as it was too heavy for the
table. Instead we looked to the capturing side of the setup. By
propping one of the legs of the tripod setup onto the shaker
table we effectively created motion blur in the images. A
picture of the shaker table setup can be seen in Figure 2.
Since the shaker table’s speed could be manually adjusted,
the amount of blur could easily be controlled and repeated
as necessary. This type of motion blur actually has a high
operational relevance as it is possible for someone to shake
the tripod holding a camera by simply walking in the vicinity.
Using this method we captured a blur dataset at 214 meters.
Assuming a linear blur model described in [6], images in
this set contained an average of approximately 18 pixels of
motion blur. Due to an error during data capture, images
were taken of 67 of the possible 68 subjects in the set. Also
only the blur set contains no pose variation. A breakdown
of the set can be seen in Table 1.

IV. BASELINE EXPERIMENTS AND RESULTS

To run experiments we used the same two recognition
algorithms used in [12]. One is a “V1-like” algorithm de-
scribed in [17], the other is a leading commercial algorithm.
Both were implemented into a pipeline setup consisting of a
watchlist enrollment phase followed by a recognition phase.
Both portions have the option to use the Viola Jones face
detector [21] and the eye detector used in [18]. The “V1-
like” algorithm is the same as in [12]. The geo-normalization
from the CSU Face Identification Evaluation System [2], and
Self Quotient Image (SQI) lighting normalization described
in [22] are integrated into the recognition process.

For the commercial algorithm we re-implemented the code
using a provided SDK to speed up the testing process. In our
previous work [12] we did a 1-to-1 verification comparison of
each probe and gallery as opposed to generating a watchlist.
Also in the previous work we cropped the image around
the display apparatus and used the commercial algorithm’s
face detector. This worked fine for the frontal tests as the
face detector performed well and was essentially equivalent



Top row: Left image of screenshot. Right image re-imaged 81
meters indoors. Bottom Row: Left re-imaged 214 Meters. Right re-imaged
214 meters with motion blur. We are able to add difficulty to the exact same
model simply by changing the setting in which it was imaged.

Fig. 3.

to our “V1-like” tests; that work also used ground-truth to
geo-normalize the images before applying the recognition
algorithms. Instead of cropping the images we now use
ground-truth for both algorithms.

A. POSE EXPERIMENTS

To be able to compare to previous work we replicated
the experiment design in Gross et al. [9]. For each test they
selected a single pose for the gallery and proceeded to match
on each pose as the probe. This resulted in 169 different
test combinations. We conducted this test with 6 different
probe/gallery variations. Table II shows the probe gallery
combinations of the dataset. We used two subsets from the
expressions set of PIE, screenshots of our guided-synthetic
models and re-imaged models at a distance of 214 meters.

For our tests we ran two different variations. The first
test ran without ground-truth allowing both cores to find
the face and features automatically. Eye coordinates for
each image were given to the recognition pipelines for
the second test. A total of 2028 tests combinations were
evaluated on each pipeline (2 test types * 13 probe poses *
13 gallery poses * 6 probe/gallery combinations). We wanted
to avoid the possibility of potentially having an incomplete
watchlist generated. So for the enrollment phase ground-
truth eyes were used exclusively for each test. Due to large
number of tests we cannot display all the collected data. The
toolkit available from the authors provides additional data
not presented in this paper so that researchers may have an
accurate baseline when attempting to replicate experiments.

Probe Gallery

Real Pie Real Pie

Real Pie Synthetic Pie Screenshots
Real Pie PIE-Pose-Distance

Smile Pie | Real Pie

Smile Pie | PIE-Pose-Distance

Smile Pie | Synthetic Pie Screenshots

TABLE II. A list of probe gallery combination. Real PIE refers to the
neutral pose subset of the PIE expression set. Smile Pie is the Smile subset
of the expression set. Synthetic Pie Screenshots are screenshots of the 3D
models rendered. PIE-pose-distance is the 3D models re-imaged from 214
meters away.

Validating our guided-synthetic models in our most recent
work with photoheads was done by achieving 100% recog-
nition on screenshots of frontal oriented pose. The gallery
used consisted of 3 different frontal images that were not
used for model generation. Since pose is not solved to the
same degree as frontal imagery we could not use the same
metric to validate. We re-ran the self matching tests using
the neutral expression in PIE as both the probe and gallery.
This was to give ourselves a baseline to compare to since
we could not directly compare to Gross et al.’s results.
Using the screenshots as the probes we conducted the same
tests. As seen in Figure 4 the rank 1 recognition results
for self matching tests generally performed better except in
a few cases when the pose was varied much farther from
the gallery image orientation. Recognition performance of
the screenshots decreased in the same manner as the self
matching set.

Since the performance is of a similar nature one could ar-
gue this is enough to show equivalency of the models to their
real life counterparts. However using frontal pose for both
gallery and probe the screen shots actually missed one image
when we used the “V1-like” pipeline. This is not the 100
percent we had seen before with a similar validation test. As
we stated above our original test contained 3 gallery images
instead of one. Even with this explanation the test results
being lower across the poses for the screenshots prompted
us to conduct another experiment for further validation. Our
hypothesis was that a different image of the same person
used as the gallery would yield similar results to that of the
screenshots. To do this we re-ran both of these tests but used
the smiling subset of PIE expression as the gallery. Although
this adds the variable of expression into the mix, Beveridge
et al. [1] concluded that if only one image is enrolled in
a gallery, having the person smiling is better than a neutral
pose. On the frontal test it actually missed more images than
the 3D models, not being able to recognize three subjects.
Referring back to Figure 4 it can be seen that when smiling
PIE is used as the gallery real PIE has recognition rates
closer, and in some cases at the exact same level, to that of
the screen shots.

Figure 5 shows a comparison of rank 1 recognition per-
centages. The graph displays results both commercial and
“V1-like” pipelines while using ground-truth eye points. The
gallery image has a horizontal orientation of 17 degrees to
the right. Since the gallery is still facing in a relatively
frontal view, it is no surprise that only extreme variations



V1
DataSet GT No GT | Cropping no GT
Blur Set %47.76 | %0 %26.87
PIE-Pose-Distance Camera 27 | %54.41 | %0 %30.88
Commercial algorithm

DataSet GT No GT | Cropping no GT
Blur Set %97.06 | %0 %97.05
PIE-Pose-Distance Camera_27 | %100 %5.88 %98.53

TABLE III.  This table shows rank 1 recognition results for both pipelines

on 2 sets of data containing frontal poses. Both sets of data are taken from
214 meters distance. Motion blur is added to the blur set. This has more
of an effect on the “V1-like” algorithm than the commercial. With GT or
cropping, the commercial algorithm significantly outperforms the “V1-like”
algorithm on both sets of data. When given the whole image, without any
ground truth data, both pipelines fail miserably.

in pose perform poorly across all tests. It is obvious that
the commercial algorithm steadily outperforms the “V1-like”
core. On the distance set the commercial algorithm shows the
largest difference in performance when compared to the “V1-
like” core. Figure 6 shows the same results when the gallery
camera is varied an additional 15 degrees for 32 degrees of
horizontal rotation. Even with a small increase to rotation
both algorithms see a significant decrease in performance.
The next graph in Figure 7 shows some of the more
interesting rank 1 recognition data. It shows the results from
both the recognition pipelines using a frontal image of real
PIE as the gallery and the PIE pose distance set as the
probe. As with the graphs in Figures 5 and 6 the commercial
pipeline far exceeds the results of the “V1-like” pipeline
when given ground-truth. However when the ground-truth
is taken away suddenly both behave extremely poor. Not a
single face is recognized with the “VI1-like” pipeline. The
commercial pipeline cannot achieve above 5.88%.

B. BLUR EXPERIMENTS

To test blur we used the frontal neutral expression pose
from PIE as the gallery and compared it to the blur dataset
captured at 214 meters. Since we had already validated the
frontal pose of our models in [12] there was no need to do
so for this set of tests. In table III we show the recognition
results of the blur set.

We compared the recognition results on the blur set to
that of frontal pose from the pose set as seen in Figure |
as C27. A cropped version of this and the blur image can
be see in the bottom row of Figure 3. As expected adding
blur makes recognition on the same dataset more difficult.
As with the pose set, the commercial algorithm outperforms
the “V1-like” core when using ground-truth or a cropped
image. When given the entire image without any ground-
truth both perform dismally. Only on the frontal pose set
was the commercial algorithm able to recognize any faces at
all. Every other test resulted in no faces being recognized.

V. CONCLUSIONS
After conducting multiple tests we conclude that while
Pinto et al.’s claim that datasets are too easy and not relevant
enough to practical recognition scenarios has some validity,
their concerns are not the only problem. We agree with their
conclusion that algorithms may be exploiting attributes of
certain datasets, yielding unrealistically optimistic results,

which is the first half of the problem. Thus, improving
dataset design to limit these variables is part of the solution.
The second half of the problem we concluded is researchers
actively or implicitly applying significant constraints to the
problem by the way they conduct testing. Most experiments
on recognition algorithms are given clean data with a cropped
image and/or coordinates of feature points. As seen with our
tests on the blur set when either algorithm is given nothing
but an unprocessed image, which is truer to a real life imple-
mentation, they perform poorly. When given ground-truth or
cropped images, both algorithms see a drastic improvement
in performance. Even if no cropping is done, most datasets
are at very close range with the face dominating the image,
so there is little difference if the image had been cropped
around the face.

Pose and blur are still unsolved, but important problems.
Furthermore, outdoor distance adds complexity to recog-
nition problem. Close range frontal recognition is widely
viewed as essentially solved. By simply adding distance
we turned what seemed to be an easy problem based on
a well known dataset into an extremely difficult challenge.
The photohead system allows us to evaluate algorithms, and
more importantly entire face recognition systems, with more
relevance. The key is for researchers to use the data collected
appropriately and not over constrain it to the point of making
experimental results look as though the problem has been
solved.

The true contribution of this paper is the toolset for and
validation of our 3D photohead methodology. Our previous
work using guided-synthetic 3D models in [12] was evalu-
ated only using nearly frontal approach images. This paper
shows that even under different poses our guide-synthetic
models are equivalent to their real life counterparts. While
PIE might be viewed as a smaller set, now that we we have
validated the process it opens the door to a much larger
variety of data that can be generated from our models. Using
this method has enabled us to create multiple datasets for
public release. It has also created a framework for evaluating
entire face recognition systems. By releasing the 3D models
and our display program as a complete toolkit, we are
enabling researchers to use this set of tools to conduct their
own experiments. Researchers have the potential to improve
recognition rates not only by using better algorithms but also
by using higher quality imaging techniques. [17] asked for a
more difficult dataset to solve. Not only are we providing a
more difficult dataset, we are giving people the tools needed
to design and create datasets. If researchers feel our dataset
did not provide them with enough challenge, they now have
the ability to design a dataset as difficult as they desire.

The complete toolkit, including datasets and the 3D mod-
els presented in this paper is available from the authors.
Additionally, the program used to render the models is also
available. Anyone producing proof of license for the PIE
[19] dataset will be allowed to obtain the PIE models. This
is due to the licensing restrictions of PIE and our agreement
with CMU. Similarly we can also provide our (2D) FERET
photheads and MBGC-based dataset with hundreds of 3D
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Fig. 4. This graph shows the results from the “V1-like” recognition core using Ground-Truth points. Each Bar is a Gallery-vs-Probe combination. When
using the real PIE set as the gallery the screenshots perform worse when compared to the real PIE set, except for a few cases. However, when the gallery
is changed to the Smile PIE subset, the real PIE set results go down. In many cases it even gets the same recognition results as the screenshots, showing
that the difference in performance is mainly due to the similarity of the pictures and not because the data is synthetic.
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Fig. 5. Using a small degree of pose variation (17 degrees) for the gallery image results in relatively good results when the real PIE and screenshot
sets are used as probes, if the pose variance was within 32 degrees. Both algorithms were given eye coordinates. The commercial algorithm clearly out
performs the “V1-like” core. For the distance pose set, the commercial algorithm still gets useable results to the rest of the tests. The “V1-like” core is no
better than chance even with little to no pose variation in the probes.
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Fig. 6. Same type of graph as Figure 5 except the gallery camera has horizontal pose variance of 32 degrees. Even with this small increase the results
go down drastically for both algorithms even on images with little or no variation in pose.
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This graph shows the results of both the “V1-like” and commercial algorithms when using an image with no pose variation as the gallery.

Again, the commercial algorithm outperforms the “V1-like” core when given ground-truth eye coordinates. However, when given no ground-truth at all
both algorithms fail. The “V1-like” core cannot recognize a single image and the commercial algorithm fails to get above 5 percent except on the frontal
pose image where even then it achieves only 5.88% recognition.

models, again to individuals that have licenses to the un-
derlying data. For further details please contact one of the
authors.
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