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Abstract

Within the forensics community, there is a growing inter-
est in automatic biometric-based approaches for describ-
ing subjects in an image. By labeling scars, marks and tat-
toos, a collection of these discriminative attributes can be
assigned to images and used to assist in large-scale per-
son search and identification. Typically, the imagery con-
sidered in a forensics context consists to some degree of
uncontrolled, unprofessionally generated photographs. Re-
cent work has shown that it is quite feasible to detect scars
and marks, as well as categorize tattoos, presuming that the
source imagery is controlled in some manner. In this work,
we introduce a new methodology for detecting and classi-
fying scars, marks and tattoos found in unconstrained im-
agery typical of forensics scenarios. Novel approaches for
initial feature detection and automatic segmentation are de-
scribed. We also consider the “open set” nature of the clas-
sification problem, and describe an appropriate machine
learning methodology that addresses it. An extensive se-
ries of experiments for representative unconstrained data
is presented, highlighting the effectiveness of our approach
for images found “in the wild”.

1. Introduction

Digital image forensics encompasses a wide range of
applications, including person search and identification,
where suspects, victims and even general scenes must be
considered by visual appearance. While traditional biomet-
ric matching is helpful for specific person identification, of-
ten times a search for a broader spectrum of potential can-
didates is what is desired during an investigation. Further,
when only uncontrolled, unprofessionally generated pho-
tographs are available, traditional biometric matching might
not be feasible. Cases like these can still benefit from au-
tomatic biometric-based approaches for describing subjects
in an image by significant dermatological features such as
scars, marks and tattoos.
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Figure 1. Constrained vs. unconstrained imagery for forensics sce-
narios. In many cases, constrained imagery that is controlled for
lighting, pose or feature of interest is simply not available, leaving
us with a more challenging problem when trying to label scars,
marks and tattoos. In this work, we look at extending support
for dermatological feature detection and classification to uncon-
strained imagery. Further, we consider the problem of open set
recognition, where every candidate image is not assumed to con-
tain a face, skin region or tattoo.

Very promising recent work has shown the feasibility
of detecting scars and marks, as well as categorizing tat-
toos. Jain et al. [10] note that facial mark detection has
now reached the levels of accuracy required for image re-
trieval and augmented face matching applications that are
tailored to forensics. Similarly for tattoos, Lee et al. [15]
demonstrated good accuracy for forensics oriented image
retrieval for tattoo categories over a database of many thou-
sands of images. The approaches commonly deployed
for these tasks include a collection of well-known image
modeling methods and feature descriptors that have typi-
cally produced good results for related image categoriza-
tion tasks. Given a frontal image of a person, the face
can be pre-processed using 3D morphable models for align-
ment, followed by the application of a Laplacian of Gaus-
sian (LoG) operator for mark detection [10]. Given a tattoo
image, SIFT features can be directly computed and used
in a distance-based comparison to other images stored in a
database [15].
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Figure 2. The components of our pipeline methodology integrating scars, marks and tattoos. The detection components (green squares)
are specifically designed to isolate candidate regions that might contain a dermatological feature of interest. The classification components
(blue ovals) allow us to label particular dermatological features, and in an open set context, eliminate objects that are not scars, marks or
tattoos. Since a wide variety of tattoos exists, we also support identifying particular tattoo categories.

While the results found in the literature are promising for
reasonably constrained imagery, they do not perform as well
on unconstrained imagery. For example, consider the indi-
vidual images in Fig. 1. The tattoo work described by Lee
et al. [15], the facial mark work of Park and Jain [18], and
the skin mole work of Cho et al. [5] all constrain their input
imagery to pre-cropped regions where the feature of interest
can be isolated without considering a larger scene. In this
work, we are interested in extending support for dermato-
logical feature detection and classification to unconstrained
images, such as those shown on the right of Fig. 1.

Another important aspect of unconstrained recognition
is that of the “open set” nature of the problem. Prior work
in this area has always made the assumption that a face,
skin region or tattoo is present in the image. For instance,
in content-based image retrieval (CBIR) [15], a SIFT-based
distance comparison to known tattoo images will always re-
turn the closest matching candidates, regardless of whether
or not the input image is actually of a tattoo. We consider
the open set model, where every image is not assumed to
contain a face, skin region or tattoo, to be correct for this
problem, and structure our learning approach around it.

In this paper, we introduce a new methodology for de-
tecting and classifying scars, marks and tattoos found in
unconstrained imagery typical of forensics scenarios. Our
specific contributions include:

1. Detection and Segmentation for Unconstrained Im-
agery: We introduce a novel algorithm for detecting
dermatological features on the face, and a automatic
variant of the GrabCut [23] segmentation algorithm
coupled with a quasi connected components approach
for tattoo detection.

2. Open Set Classification: When considering uncon-
strained imagery, it is possible that images that do not
contain what we are looking for will be submitted for
classification. We introduce an open set classification
approach to account for the “unknown” class.

3. A Pipeline Methodology Integrating Scars, Marks

and Tattoos: In prior work, smaller features like scars
and marks were treated distinctly from more compli-
cated tattoo features. Here we present an integrated
methodology (Fig. 2) that can detect and classify all
dermatological features as one process.

2. Related Work

The medical imaging community first considered the
problem of detecting marks on the skin for diagnostic anal-
ysis. Cho et al. [S] describe a reliable skin mole localiza-
tion scheme that utilizes skin detection to isolate candidate
regions in an image, a Difference of Gaussian (DoG) fil-
ter to detect specific mole candidates, and a support vec-
tor machine (SVM) classifier. In biometrics, marks such
as freckles, moles and scars are considered “‘soft biometric”
features — too weak to stand alone as discriminative features
for identity purposes, but useful features to improve match-
ing accuracy when combined with more traditional biomet-
ric features.

Jain et al. [10] provide a comprehensive overview of the
work at Michigan State University and elsewhere for incor-
porating facial marks into forensics oriented face applica-
tions. Park and Jain [13, 18] developed an automatic facial
mark detection method that utilizes an active appearance
model for locating primary facial features that can be elim-
inated from consideration (eyes, nose and mouth), a LoG
feature detector, and morphological operators to enhance
accuracy. Experimental results show that this approach is
able to enhance the matching performance of a competi-
tive face recognition algorithm. In similar work, Ramesha
et al. [21] describe a template based mole detection ap-
proach that utilizes normalized cross correlation, comple-
ment of Gaussian templates and skin segmentation. Park et
al. [19] showed that facial marks are also able reduce im-
age retrieval time for very large scale face databases. When
considering challenging unconstrained data, the accuracy of
this existing dermatological mark work is significantly im-
pacted by false positives caused by several constraints we
discuss in Sec. 3.



Tattoos represent another discriminative feature that can
be used in a broader biometric context for person identifi-
cation. A good survey treatment of tattoo classification is
also provided by MSU [15]. Jain et al. [11] first looked at
color, shape and texture features to describe tattoos, with a
simple histogram bin distance metric for comparisons. Sub-
sequent work at MSU [14, 12, 15] moved towards SIFT-
based feature extraction and distance comparison for CBIR.
For image retrieval, results were noted to vary as a func-
tion of image quality. When text labels outside of the vision
system were incorporated, accuracy increased to acceptable
levels when poor quality images were considered. Noting
weaknesses in the edge-based segmentation incorporating
morphology in [11], Acton and Rossi [1] proposed active
contour-based segmentation and a global-local feature for
tattoo specific CBIR.

While evaluating the above tattoo approaches for un-
constrained imagery, we found two significant shortcom-
ings. First, the prior work makes use of pre-cropped im-
agery [11, 1, 14, 12, 15], and does not consider a broader
scene as input. Second, in all cases, distance metrics are
used for matching to find the images closest to an exemplar
image, and must make use of an empirical threshold to re-
ject non-tattoo candidates. In our work here, we consider
full scenes where a person and tattoo might be present, as
well as a flexible learning approach that can reject features
from detected objects that are not of interest.

Full scenes require a segmentation approach that is
stronger than edge detection & morphology [11] or active
contours [1]. Some of the best recent approaches to the
general problem formulate segmentation as a pixel-based
energy function that can be optimized using a graph cut
for energy minimization. Connectivity priors, shape priors,
and random walker-based algorithms are recent innovations
that show promise. However, in practice, segmentation al-
gorithms that require a manual bootstrapping stage provide
better results. The GrabCut algorithm [23] iteratively re-
estimates region statistics, which are modeled as mixtures
of Gaussians in color space, based on minimal user input.
In this work, we look at replacing the need for user input by
automatically estimating a bootstrap region.

For the open set problem, the 1-class SVM has received
some attention in the computer vision literature — mostly
in the areas of image retrieval and face recognition. The
application of 1-class SVMs to problems in computer vision
was first made by Chen et al. [3] a decade ago. For binary
classification, equal treatment is usually given to positive
and negative training examples. However, Chen et al. argue
that while it is reasonable to assume that positive training
examples cluster in a certain way, the same cannot be said
about negative examples, since they can belong to any class.
Thus, for an open set problem, it seems natural to consider a
1-class SVM, which is trained using only positive examples

for a target class.
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Figure 3. The automatic facial mark detection process.

3. Facial Mark Detection with Refinement

Like the prior work in this area [18], we make use of a
combination of common image processing and facial mod-
eling techniques (Fig. 3). However, our set is tailored to
the specific refinement we need to handle a broader range
of imagery. Our first stage facial mark detection approach
begins with a LoG filter for pre-processing, since the facial
landmarks we are trying to segment and classify all appear
as salient regions on the face. We perform filtering at two
different scales. The first scale utilizes a LoG filter with a
15x15 kernel and o = /1.6. This filter allows us to de-
tect small facial marks such as moles and freckles. The
second scale utilizes a LoG filter with a 25x25 kernel and
o = +/11.5. This filter is used to detect larger structures
such a scars. The filtered images are normalized with re-
spect to lighting using the SQI algorithm [26].

After SQI normalization, a histogram is computed over
the filtered image to segment the skin pixels from the facial
mark pixels. The histogram will bin the elements of the im-
age into six equally spaced containers ranging from 0.0 to
the maximum pixel value in the filtered image. Since the
value of skin in a LoG filtered and SQI normalized image
should be approximately equal to 0.0, the first histogram bin
will contain a large majority of the skin pixels. Therefore,
we threshold the image at approximately the edge of the
largest bin in the histogram to separate skin pixels from the
candidate facial mark pixels. If there are too many pixels
in the first bin our algorithm will automatically adjust the
threshold based on the overall distribution. Approximately
85% to 90% of the pixels are eliminated using this tech-
nique. Finally, the two thresholded images are combined
using a binary OR operation to produce our initial candi-
date map image (Fig. 3(a)).

While the use of the LoG filter is very effective at seg-
menting skin and non-skin regions, the preliminary facial
mark candidate map can still contain the primary features



Figure 4. An example of a graph-based visual saliency algorithm
(GBVS). Left: Original image. Center: Raw saliency map. Right:
Deep saliency map, in which red regions are the most salient.

of the face including the eyes, eyebrows, nose, mouth, and
hair. Therefore, our next step in the pipeline is to eliminate
primary feature areas before we move to classification. To
delineate the primary facial features we use an Active Shape
Model (ASM) [17]. Once the facial landmarks are located,
we construct a mask (Fig. 3(b)) from the results of the ASM
algorithm to suppress false positives caused by primary fa-
cial features. The ASM based mask does not eliminate user
specific facial features such as beards, mustaches, or wrin-
kles around eyes that can also increase the false positive
rate during classification, so the next step in our pipeline is
to build a second mask based on skin detection results.

This second user specific mask is constructed using a
skin detection algorithm based on the work of Pierrard and
Vetter [20], but adapted for color images. The first step in
our skin detection process is color SQI normalization of the
original image. Based on the results of the ASM algorithm,
we take a sample patch of skin from the left and right cheek
of the subject. We then use the sample patches in conjunc-
tion with the skin detection algorithm to form a skin error
map (Fig. 3(c)). The brightness of a pixel in the map, rang-
ing from 0.0 to 1.0, correlates directly to the probability of
a pixel being a non-skin area. Once the skin error map has
been obtained we again threshold the image using the his-
togram technique described above.

Prior work in this area [18] also builds a user specific
mask based on an edge image that is obtained by using the
conventional Sobel operator. However, in our own evalua-
tion, we observed that it also eliminates a number of areas
with true facial marks. In our algorithm, small structures
are eliminated from the skin error map after thresholding,
since these structures are potential facial marks. Subse-
quently, these small structures are merged with the prelim-
inary facial mark candidate image as potential facial marks
for classification (Fig. 3(d)) and the remaining structures in
the thresholded skin error map are combined with the ASM
based mask to form a third user specific mask.

The values of active pixels in the facial mark candidate
image at this point range from 1 to 2, where a value of 2
corresponds to active points in both the original facial mark
candidate map image AND the small structures that were
added to it. Values of 1 correspond to an active point in ei-
ther the original facial mark candidate image OR the added
small structures. Finally, the facial mark candidate image is
filtered with the third user specific mask (Fig. 3(e)). We fil-
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Figure 5. The automatic tattoo segmentation process.

ter the final facial mark candidate image at both the 1 and 2
value levels to produce two final candidate facial mark im-
ages. The final candidate facial mark images are then sent to
the facial mark classifiers (described in Sec. 5) to determine
what they are. Before classification, the blobs are sorted for
saliency based on their value in the LoG and skin detection
images. This allows us to return the top N blobs per image.

4. Tattoo Segmentation: Automatic GrabCut +
Quasi Connected Components

Tattoos are a more complicated feature than marks, thus,
we handle them using a separate approach. Our approach
consists of two parts. First, we segment the image using
an iterative image segmentation based on the GrabCut al-
gorithm of Rother et al. [23]. We then apply a variant of
connected components to the segmented image to extract
coherent tattoo objects.

To initially segment the raw image we use an iterative
image segmentation technique based upon the GrabCut al-
gorithm. We chose the GrabCut algorithm because it con-
sistently segments and returns a full tattoo image while only
requiring a simple bounding box input. The GrabCut seg-
mentation approach is based on optimization by graph-cut
and utilizes both texture information and edge/contrast in-
formation. User interaction is simplified to drawing a rect-
angle around the desired foreground, followed by a small
amount of corrective editing. In practice, this manual boot-
strapping yields excellent results, but has the drawback of
human intervention.

Similar to the work in [4], we have automated the Grab-
Cut algorithm through the use of the saliency , specifically
the graph-based visual saliency model (GBVS) [7]. The
idea of saliency maps is that the sight or gaze of people
will direct to areas which, in some way, stand out from the
background. For our particular application these areas of
interest are tattoos within the image. The GBVS algorithm
consists of two steps. First, the algorithm creates feature
maps using the technique of Itti et al. [9], and then performs



normalization using a graph-based approach. The GBVS
model is simple and powerfully predicts human fixations; it
has achieved 98% of the ROC area on 749 variations of 108
natural images [7], whereas the visual saliency algorithms
of Itti et al. only achieve 84%. Fig. 4 shows a sample input
image and the saliency maps obtained by the GBVS algo-
rithm. Since the GBVS saliency map does not output a full
resolution saliency map, we upsample the map to the size
of the input image. Once the saliency map is computed it is
thresholded at 60% of the maximum value, where we clas-
sify all points above the threshold as foreground (the tar-
gets) and all points below as background. The thresholded
saliency map defines our region of interest input into the
GrabCut segmentation algorithm described below. If more
than one region exists after thresholding, we subsequently
process each region separately. After the bounding box is
computed, the GrabCut algorithm is executed on the image
to produce a segmentation mask and segmented image (Step
1 in Fig. 5).

We then perform LoG filtering on the original image and
automatically threshold the results using the technique de-
scribed in Sec. 3 to produce an initial candidate tattoo im-
age map. Performing LoG filtering on the segmented image
does not work due to the sharp contrast around the bound-
ary of the image, which affects the automatic thresholding
operation. A second filtering operation is then performed
on the image using a Sobel kernel with a lower threshold
than the LoG filter to produce a second candidate tattoo im-
age map. We chose to use a Sobel kernel instead of a LoG
with a smaller scale to facilitate the detection of blobs that
are not detected by LoG filtering. The results of the filter-
ing operations are combined to produce the initial candidate
tattoo map (Step 2 of Fig. 5).

Subsequently, to group the pixels of the individual com-
ponents in the image, we perform a variant of image
connected components called quasi-connected components
(QCC) [2]. While this technique was originally designed
for target detection and tracking applications, we have
adapted it for the extraction of tattoos. QCC is designed to
fill in gaps in a thresholded image while eliminating noise.
The quasi-connected components idea can be viewed as a
direct extension of the idea of thresholding with hystere-
sis, where we allow the connections to jump over small
gaps within the “parent” or high threshold pixel. We per-
form QCC for our LoG and Sobel filtered images using 8-
neighbor connectivity, with a threshold value ranging from
0 to 1 for both images, as the primary pixel inclusion test.
The high threshold image produced from the LoG filter al-
lows us to filter out components that may have been noise
not filtered out by the lower threshold Sobel filtered image.

Our modified QCC algorithm can be summarized as fol-
lows. If a low threshold pixel is within a user defined dis-
tance from a high threshold pixel then it is labeled as part
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Figure 6. Comparison of tattoo segmentation algorithms. Left:
Original image. Center: Segmentation results using algorithm of
Lee et al. [15]. Right: Segmentation results using our algorithm.

of the foreground, otherwise the pixel is labeled as back-
ground and subsequently discarded. A region size param-
eter controls how aggressively pixel groups are combined
to form single components. The output image contains all
of the high threshold pixels and the low threshold pixels la-
beled as foreground. The QCC image is then filtered with
the mask produced from the GrabCut algorithm to produce
our final candidate tattoo image (Step 3 in Fig. 5). Finally,
8-way connected components is performed on the image to
produce N blobs that will be individually extracted and sent
to the tattoo classifiers (Step 4 in Fig. 5).

Extraction methods similar to Lee et al. [15] that use
standard connected components with the morphological op-
erations of closing and opening were also evaluated. How-
ever, these techniques frequently return most, if not all, of
the entire image due to the opening and closing. As part of
our research we identified and corrected this problem using
the QCC algorithm. Fig. 6 shows a visual comparison be-
tween our tattoo extraction algorithm and the technique of
Lee et al. [15].

5. Skin Feature Classification Approach

From the candidate image regions that are determined by
the detection techniques described in Sec. 3 & 4, we com-
pute features for our open set machine learning. The un-
derlying features used for classification of tattoos (first and
second level classifiers) are generated by extracting points
of interest (Pols) from the image regions using Difference
of Gaussians as proposed in [16], and then computing an
LBP-like [24] feature descriptor in a window around each
detected Pol. Feature vectors are composed of histogram
bins that summarize the feature descriptor information for
each sample image.

Scars and marks are significantly smaller, and do not
have enough POIs for the above algorithm to work effec-
tively. Thus, for the first level classifiers for marks and
scars, we make use of Histograms of Oriented Gradients
(HOG) [6] as low-level features. HOG features are accurate
for specific object detection, and capture a large amount of
information from our small candidate image regions. They
are, however, not as accurate as the Pol + LBP-like descrip-
tor approach for tattoos, due to the impact of the orienta-
tion information during matching (tattoos tend to be found



in more diverse geometrical configurations than scars or
marks). Both approaches produce low-level features that
are suitable for SVM-style learning.

The 1-class SVM introduced by Scholkopf et al. [25]
adapts the familiar SVM methodology to the open set recog-
nition problem. With the absence of a second class in
the training data, the origin defined by the kernel function
serves as the only member of a “second class”. The goal
then becomes to find the best margin with respect to the ori-
gin. The resulting function f after training takes the value
+1 in a region capturing most of the training data points,
and —1 elsewhere.

Let p(x) be the probability density function estimated
from the training data {z1, 22, ..., Zm | x; € X}, where X
is a single class. A kernel function ¥ : X — H transforms
the training data into a different space. To separate the train-
ing data from the origin, the algorithm solves a quadratic
programming problem for w and p to learn f:
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In the 1-class SVM, p(x) is cut by the margin plane min-
imizing Eq. 1 and satisfying Eq. 2. Regions of p(z) above
the margin plane define positive classification and capture
most of the training data. The kernel function ¥ impacts
density estimation and smoothness. The regularization pa-
rameter v € (0, 1] controls the trade-off between training
classification accuracy and the smoothness term || w ||, and
also impacts the choice and number of support vectors.

We use the 1-class SVM formulation to train our first
stage scar, mark, and tattoo classifiers, as well as our sec-
ond stage tattoo category classifiers. The 1-class SVM gives
us the flexibility to handle any “unknowns” that might be
submitted to a classifier. Since our processing pipeline is
completely automated, the possibility exists that image re-
gions that are not drawn from the classes of interest will be
submitted for classification. Further, like Lee et al. [15], we
can also support multiple labels for a tattoo, by considering
multiple positives decisions from a set of classifiers. This
is necessary when class overlap occurs (for instance, our
classes “female” and “artistic human rendering”).

6. Experimental Evaluation

To evaluate our overall pipeline, we consider final “open
set” classification results as a metric of success. This takes
into account the complete flow of information from ini-
tial detection, through segmentation to the 1-class SVM (as
would be typical in an operational system). We collected a
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Figure 7. “Open Set” first level classifier accuracies for the derma-
tological features. For the smaller mole and scar objects, we make
use of HOG [6] low-level features, while for tattoos, we make use
of LBP-like [24] low-level features. Negative test data is com-
posed of features from other classes, as well as false positive data
from the dermatological feature detector.

significant amount of unconstrained data by crawling popu-
lar tattoo and dermatology forums found on the web, as well
as sampling from the unconstrained face set Labeled Faces
in the Wild [8], and the representative mugshot data set
MORPH [22]. To generate ground truth labels for training
and evaluation, we turned to Amazon’s Mechanical Turk
service. In total, we evaluated 6,322 images (selected by
the labels assigned by the Mechanical Turk workers) for
detection and 12,600 subsequent candidate region images
+ negative images (objects other than scars, marks and tat-
toos) for classification.

The classification component of each experiment utilized
150 images for training, 50 positives testing samples and
500 negative testing examples. This emphasizes the open
set nature of the problem, with negatives representing an
amount of data that is an order of magnitude larger than the
positives. Each 1-class SVM is trained using a linear kernel.
The ROC curves found in Figs. 7, 9 and 10 are generated
by varying the 1-class SVM parameter v, which changes
the positive and negative classification rates (as described
in Sec. 5). Points approaching the upper left of each plot
indicate higher levels of accuracy.

In our first experiment, we assess the accuracy of our
“open set” first level classifiers. Negative test data is com-
posed of features from other classes, as well as false positive
data from the dermatological feature detector (for example,
the negative data for tattoos consists of marks, scars and
other non-dermatological objects). While feature rich tat-
toos provide plenty of information for the machine learning,
yielding very good accuracy, the smaller marks and scars
are more difficult to discern from the negatives that are of-
ten mark- or scar-like in appearance (Fig. 8). Considering
the difficult nature of our data, these accuracies are a step in
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Figure 8. A selection of image regions containing different types of
small features of interest and similar looking negative images. The
image regions at their actual sizes are on the right, while enlarged
versions showing detail are on the left.

the right direction towards an operationally viable solution.

Moving on to specific tattoo classes, when we began this
work, we considered the approach of Lee et al. [15], which
consists of a SIFT-based distance comparison between im-
ages. That approach is very well suited to problems such as
CBIR, where we have an exemplar image, and want to find
the closest visual matches in a closed set context. However,
in an open set classification scenario, a distance compar-
ison to known tattoo images will always return the closest
matching candidates, regardless of whether or not the image
is actually of a tattoo. We adapted the approach of Lee et
al. (reimplemented based on the description in their article)
to open set classification by applying a series of threshold
tests at set intervals over the distance scores to reject “non-
matches” when comparing against a gallery composed of
images of the tattoo class of interest. In the summary plot
of Fig. 9, we can see a comparison between the work of Lee
et al. with thresholds and our proposed approach for all 15
tattoo classes we evaluate in this paper. Our 1-class SVM
approach, which was designed specifically for the open set
problem, shows superior accuracy.

With respect to the 15 individual tattoo classes, we exam-
ined a broad range of classes related to animal and human
figures, as well as other object forms. Fig. 10 highlights
our results, with very good accuracies (note that the y-axis
begins at 0.5) for all classes. Similar to what we observed
with moles and scars, classes representative of smaller ob-
jects (butterflies, wild birds, celestial objects) are more dif-
ficult to classify. In general, small objects are a significant
challenge area for this problem (also noted in [15]), which
we are continuing to tackle.

7. Discussion

In this paper, we took a look at the next challenge for the
detection and classification of scars, marks and tattoos: un-
constrained imagery for forensics applications. While very
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Figure 9. A comparison between our work and that of Lee et
al. [15] for “open set” tattoo classification for 15 classes. The
SIFT-based distance comparison method of Lee et al. is not well
suited to problems where non-tattoo data is present. A more flexi-
ble 1-class SVM approach shows superior accuracy. Negative test
data is composed of features from other tattoo classes, as well as
false positive data from the tattoo detector. Vertical error bars in-
dicate the standard error of the true positive rate, while horizontal

error bars indicate the standard error of the false positive rate.

promising recent work has demonstrated that these derma-
tological features can be detected and classified, there is
much work yet to be done to accurately process images
found in the wild. During our study of this topic, we con-
cluded that automated facial mark detection and tattoo seg-
mentation that can flexibly filter candidate regions are es-
sential for a good forensics solution. We also discovered
that approaches designed for closed set evaluation do not
readily apply to open set problems where we don’t have
complete control over the input images. Our current work is
assessing more descriptive feature sets and visual attributes
for dermatological object labeling (especially for very small
objects), as well as new machine learning algorithms that
are specific to the open set recognition problem.
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