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Abstract - In this paper, we investigate three 

syntax based, sliding window schemes for 

automatic intrusion detection. The first method, 

the fixed partition sliding window scheme 

(FPSW), uses a fixed window size and a one-

byte sliding window. The second method, 

referred to as variable-length partition sliding 

window (VPSW), uses a variable length window 

with a predetermined breakmark.  The third 

method, referred to as variable-length partition 

with multiple breakmarks (VPMB), is similar to 

VPSW except that multiple breakmarks are used. 

The results indicate that while the FPSW and 

VPSW methods are effective for detecting 

worms with mild changes in the worm code 

contents, VPMB is suitable for detecting fully 

polymorphic worms.  

 

1. Introduction 
The intrusion detection system (IDS) 

has become extremely important in recent years 

to combat a rapid increase in malicious software. 

On the network, modern worms can spread very 

quickly and widely, thus automatic response is 

required to contain outbreaks. Two of the most  

popular signature based IDS systems are Snort 

[1] and Bro [2]. Each was designed to be more 

adaptable to emerging threats, but only through 

human intervention. 

 Computers allow us to represent the 

same data in variety of different ways. This 

useful flexibility turns against us in IDS, where 

reliable pattern matching is desirable. Figure 1 is 

a simple example of Unicode being used to 

encode a single character to thwart a static IDS 

signature. IDS authors responded to such 

encoding attacks by including decoders for 

popular methods. This, however, proves to be 

inadequate, as a multitude of clever encoding 

schemes exist, allowing an attacker to craft 

special URLs with whitespace, directory 

traversals (i.e ../../../), and local directory access 

(i.e. ./././) with ease. 

   

 

 
Figure 1. unicode encoding of ‘a’ in HTTP GET 

request 

 

Moreover, attackers are certainly not 

limited to attacks with ASCII features. Malicious 

binary code may be encrypted with a unique key, 

completely obscuring its purpose. This form of 

obfuscation is a type of Polymorphism. It is also 

possible to alter the very structure of binary 

code, through code transposition, equivalent 

instruction substitution, jump insertion, NOP 

insertion, garbage instruction insertion, and 

register reassignment. This is known as 

Metamorphism. Thus, we are presented with the 

key question this paper attempts to address: How 

can we reliably detect threats on the network in 

the face of such dynamic malicious traffic? 

 In order to answer this question, we will 

investigate the syntax based, sliding window 

approach to dynamic IDS, and evaluate three 

competing schemes. The rest of the paper is 

organized as follows: In Section 2, we describe 

some related work and discuss how several 

particular works motivate this research. In 

Section 3, we describe the motivation and design 

behind each of the sliding window methods. 

With this knowledge, we proceed to Section 4, 

where each method is evaluated using an 

extensive set of real network traffic. Finally, we 

summarize our findings and discuss some future 

work that we intend to explore in Section 5. 

 

2. Related Work 
In [3], the authors present the case for 

collaborative intrusion detection system where 

intrusion detection nodes cooperate to determine 

if a network attack is taking place and take 

corrective actions if it does. Others have sought 

to use statistical approaches to detect worm 

outbreaks. In [4], the authors propose a method 

to identify a worm victim by observing if the 

number of scans per second it performs exceeds 

a certain threshold. The numbers of worm 

victims observed in successive windows are then 

compared to the numbers predicted using a 

typical worm spread model and if they match, 

then a worm outbreak is declared.  

Sliding window schemes [5] [6] are 

based on the premise that some portion of 

malicious code will inevitably be invariant, 

despite attempts at obscuring its true nature to 

avoid detection. Autograph [5] was the first 

system of this type to emerge, and based its 

detection on content-based signature generation 

driven by breakmark delimited windows. As a 

follow-up to Autograph, Earlybird [6] used the 

same content-based signature methodology, but 

improved the architecture as a NIDS. Refinement 



takes place in what the authors term "content 

sifting," whereby precise signatures are 

generated in a more efficient method (through 

the use of optimized data structures) than 

Autograph.  

   

3. Sliding-Window Schemes 
In this section, we describe a prototype 

system that has been built to automatically 

generate new worm signatures. This approach 

builds upon the previous work done in [5] and 

[6]. The approaches in [5] and [6] are based on 

the facts that a certain portion of the content in a 

worm packet is invariant and that the spreading 

of a worm is atypical of Internet applications. In 

[5], a variable-length sliding window of size b 

bytes is used to generate Rabin fingerprints of 

suspicious worm packets. The Rabin fingerprint  

[7] [8] is a one-way hashing algorithm that 

produces a 64-bit digest output. Such 

fingerprints allow us to do clustering easily. The 

payload of the packet is partitioned into multiple 

chunks when a chosen breakmark is detected. In 

[6], a fixed-length sliding window is used 

instead. However, there is no comparison of 

whether a fixed-length partition or a variable 

length partition is better in [5] or [6]. In this 

work, we compare both the fixed-length and 

variable-length partition approach. In addition, 

the work in [5] is extended by using a set of 

breakmarks rather than just a single breakmark. 

 

3.1 Method 1 - Fixed Partition Sliding 

Window (FPSW) Scheme 

 Method 1, the FPSW scheme,  

incorporates a fixed window size and a one-byte 

window sliding. The premise is simple - a series 

(perhaps large, depending on window size) of 

fingerprints is generated as the window slides 

down the payload of a packet. We will see 

common signatures between different packet 

payloads if their contents are identical or similar. 

If the window size is small enough, common 

data portions can be isolated, despite the 

variation in the overall payloads. This is useful 

for the dynamic detection of new worm variants 

(e.g. W32.Blaster versus W32.Blaster.H). Figure 

2 shows the operation of the sliding window 

using FPSW. The segments in f0, f1, and f2 will 

all be fingerprinted.  

 

 

 

 

 

   

Figure 2. Three instances of an 8-byte sliding 

window, beginning at ‘00’ for the FPSW scheme 

 

 One important decision related to this 

approach is choosing a proper window size. If 

the window size is very small (just a few bytes), 

the false positive rates will be higher. Certain 

short sequences are bound to appear in benign 

traffic as well as in malicious code. For example, 

"GET /" is typically at the beginning of a basic 

web request, but could also be followed by 

malicious exploit code. A 5-byte window would 

match both to the same fingerprint. In addition, 

the amount of signatures generated is always 

related to the window size. Smaller windows will 

produce more fingerprints, thus placing a higher 

burden on storing and searching. 

 

3.2 Method 2 - Variable-length Partition     

      Sliding Window (VPSW) Scheme 

 Method two, the variable-length 

partition sliding window scheme (VPSW), 

incorporates a one-byte sliding window approach 

until a predetermined breakmark is reached. This 

is similar to FPSW, except now the window  

 

 

 

 

 

 
Figure 3. Example of VPSW operation with a 

breakmark of "22 0a 18" 

 

grows until it reaches a pre-determined 

breakmark. When a breakmark match occurs, the 

fingerprint is generated, and the window begins 

to grow again from the stopped position. VPSW 

is similar to the scheme introduced in [5] except 

that different breakmarks can be configured. 

Figure 2.4 shows the operation of VPSW’s 

sliding window. In this example, our breakmark 

is "22 0a 18". f0 displays a sliding window in 

progress, with the last three bytes (’41 22 0a’) 

representing the break-mark match attempt. It 

fails, so the window is shifted over one byte. At 

f1, the last three bytes of the window match the 

breakmark, causing a fingerprint to be generated. 

Following this, the window begins again in f2, 

one byte directly after the previous breakmark 

match. 

In practice, this method turns out to be a 

poor performer. The variance of data before the 

breakmark makes it much harder to produce 

repeatable signatures. Certain worms such as 

Nimda contain dynamic content, while different 



versions of the same code also have variations - 

all of which may occur before a good static 

breakmark. Another problem is in choosing an 

appropriate breakmark. Selecting a series of 

NOP instructions (0x90 for x86) is a good choice 

for detecting specific types of overflow exploits, 

but certainly it does not cover every type of 

malicious traffic. Thus, much effort is required 

for selecting appropriate breakmarks. Despite 

these shortcomings, it is important that we 

introduce the VPSW scheme because a slight 

variation of this method turns out to be excellent 

for detecting polymorphic exploits. This third 

method is explained next. 

 

3.3 Method 3 - Variable-length Partition 

with Multiple Breakmarks Scheme 

(VPMB)  

Method three, the variable-length 

partition with multiple break-marks scheme 

(VPMB), is identical to Method 2, except that 

the breakmark is tuned to match a series of NOP-

like instructions. In a polymorphic exploit, we 

often see a static region initiating a request (for 

example, a web based exploit may begin with a 

normal HTTP GET request), followed by a 

region of instructions that function as NOP 

equivalents [9]. By using an adjustable look-

ahead size to match these NOP-like instructions, 

we can reliably generate consistent fingerprints 

for the static regions preceding the NOP-like 

instructions. In this method, using a look-ahead 

window of size w bytes, we search and see if all 

the bytes in this window can be found in a set of 

76 breakmarks that have been identified. If they 

are, then we will generate a fingerprint using all 

the bytes that appear before this look-ahead 

window. After that, we begin a new search using 

a new window that begins 1 byte after the 

previously matched position. Figure 4 shows the 

operation of VPMB with three different window 

sizes: 5 bytes, 10 bytes, and 15 bytes. The same 

initial byte region is isolated in all three, 

producing one, consistent signature.  

 

 

 

 

 

 

 

 
Figure 4. VPMB with three different window sizes 

 

An appropriate choice of look-ahead 

size is required to reduce the false positives. 

Similar to the FPSW's dilemma, choosing a 

smaller size will increase false positives. But 

how small is too small? Through testing (as will 

be shown later), it has been determined that a 

size of 20 bytes reduces false positives to a 

minimum. Tested cases with values greater than 

20 did not result in further reductions of false 

positive but incurred additional processing cost. 

Insight as to why 20 is the "magic" look-ahead 

size is the following - the probability of finding a 

grouping of NOP-like instructions in benign 

traffic drops considerably as the window size is 

increased. But in actual exploits, NOP regions 

tend to be larger than 20 bytes (so guessing an 

address back into the stack is a simpler process). 

Thus, 20 represents the point at which false 

positives drop to a minimum, and true positives 

don't require excess processing time. 

 

4. Evaluation 
To compare between the three 

approaches described in Section 3 and to 

evaluate the false positive/false negative rates of 

such a worm detection system, each of these 

algorithms has been implemented and applied to 

two one-hour traces that are extracted from a 

whole day's  traffic trace that was kindly made 

available by the WAIL research group [10].  In 

this whole-day trace, traffic was observed from 

two /16 subnets (16K addresses) on two adjacent 

class B networks. Traffic from only one class C 

network contained within this trace is considered 

in this study. The total packet count for each 1-

hour trace is 23,554 and 6,834 respectively. Each 

1-hour trace is further divided into 5-minute 

intervals. Signature generation is performed on 

the traffic obtained in every 5-minute interval. 

To minimize the number of packets that the 

signature generation module needs to process, 

some simple filtering is performed on the trace: 

(i) only incoming packets destined for the target 

network are considered, (ii) only TCP packets 

with the PUSH flag set are taken for fingerprint 

generation. The methods, however, can be used 

for other attack packets (i.e. UDP-based attacks) 

as well. All data in each packet is considered for 

analysis (i.e., no static SNAPLEN is utilized). 

 

4.1 FPSW 
As previously mentioned, because of 

the potential large number of fingerprints that 

can be generated using the FPSW scheme, it is 

desirable to find ways to reduce the number of 

signatures to be retained for future intrusion 

detection purposes. To accomplish this, the 

simple IP address dispersion algorithm proposed 



in [6] has been implemented. This algorithm is 

well suited for detecting rapidly spreading 

worms, by observing the frequency of distinct 

source and destination IP addresses of packets 

carrying a particular fingerprint. If a single 

fingerprint is sent from at least n distinct source 

IPs, and is destined to at least n distinct 

destination IPs, then, it is retained. A further 

trimming of the fingerprint pool is performed for 

each test by discarding fingerprints generated 

from data chunks with a high prevalence of 

NULL bytes ({00, 00, 00, 00, 00, 00, 00, 80}).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Signature counts for 1-hour trace 

 

These fingerprints are far too general, and have 

little value for detecting malicious traffic. In 

conjunction with retaining the fewest possible 

signatures, we want to maximize the amount of 

useful signatures retained. To do so, the 

Levenshtein Edit Distance algorithm [11] has 

been chosen to find similar fingerprints (amongst 

those that have not been retained) to the ones that 

have been retained for each 5 minute interval 

Figure 5 shows the result of applying 

the FPSB scheme against an hour long trace. 

Each graph interval (a five minute portion from 

the trace) increases cumulatively, with only new 

signatures being added to the total pool. 

Classification (using the algorithm described 

above) was performed at two different threshold 

intervals (n: n = 3 and n = 5. From the graph, we 

see that thousands of signatures are discarded at 

n = 3, while only a slight decrease occurs from n 

= 3 to n = 7. When the clustering algorithm (also 

described above) is applied at both classification 

thresholds, we see a slight increase in the 

signature pool, as expected. Via clustering, a 

total of 274 signatures are added to the signature 

pool, with about 23 signatures added per 5-

minute interval. Thus, we are able to tune the 

signature pool accordingly, with the maximum 

amount of useful signatures retained. 

 From what has been shown thus far, it is 

clear that FPSW has the potential to generate a 

large number of signatures. Tables 1 and 2 

provide us with insight into the dynamics of 

signature creation and retention. In both tables, 

the data has been condensed into six 10-minute 

windows. Table 1 presents the results for the 

formula Δpkts / Δnewflow, where Δpkts 

represents the additional (not total) packets from 

the new flows added to the total pool at each 

time interval, and Δnewflow represents the 

additional (not total) flows added at each time 

interval. In essence, this formula gives us an 

average number of packets added for each flow 

at each time interval. Overall, only a few packets 

are added at each time interval for both hours, 

with 2.66 packets added per flow on average for 

the first hour, and 3.05 packets for the second 

hour. Thus, the malicious traffic considered here 

does not produce a heavy flow of packets per 

connection. However, this is not a general trend 

that may be applied to all malicious traffic - 

denial of service attacks in particular may 

generate a very large packet pool per connection. 

 

 

 

 

 

 

 

 
Table 1. (Δpkts / Δnewflow) 

Table 2 presents the results for the 

formula Δs / Δnewflow, where Δs represents the 

additional (not total) signatures added to the total 

pool at each time interval, and Δnewflow 

represents the additional (not total) flows added 

at each time interval. This formula gives us the 

average number of signatures added to the total 

signature pool per flow. All results for both 

classification intervals with and without 

clustering applied are included. Overall, only a 

small amount of new signatures is added by each 

flow. 

 

 

 

 

 

 

 

 

 

 
Table 2. (Δ s / Δnewflow) 



 

There are several interesting features 

present in this table. First, we notice the largest 

amount of new signatures added on average 

occurs at the first time interval, 00. This 

indicates a large amount of repetition in 

generated signatures at the time intervals that 

follow; which by time 50, no additional 

signatures have been added. Second, somewhat 

counterintuitive results are present at the 

threshold intervals where n = 7. From data 

presented in the earlier tables and graphs, we 

expect the numbers here to be lower than that of 

their n = 3 counterparts. In Table 2, we see 

several instances (Hour 1: 20, Hour 2: 40) where 

this is not the case. The explanation for such 

behavior is this - earlier flows where signatures 

were retained at n = 3  have been discarded by n 

= 7. However, these same signatures have been 

generated by retained flows at later time 

intervals. That is, the same packet data exists at 

multiple time locations, thus producing the same 

signatures. 

Now that a pool of signatures has been 

generated, we must find out how relevant they 

are to detecting malicious traffic. Ideally, we 

would like the signatures generated early on to 

detect future instances of the same (or similar) 

threat. In practice, this is what occurs. The first 

number in each entry of Table 3 displays 

signatures from each time interval that are 

common to the initial retention period (time '00') 

for Welchia activity. The second number 

represents the total signature count. In Table 3, 

the greatest variance from the first time interval 

shown is 23 for hour 1, and a very large 275 for 

hour 2.  

Investigation into why large variances may 

occur reveals that the rate of active protocol 

scanning by malicious software is the culprit. As 

opposed to stealth-type scanning performed by 

tools such as nmap (which may not even create a 

full TCP connection), active protocol scanning 

will probe a target port with data; if a desired 

response is received, exploitation will 

commence. FPSW will generate signatures for 

the scans, as well as the exploit attempts. Thus, a 

lull in scan activity will create variance in the 

count of similar signatures observed. The 

amount of additional signatures added to those 

already observed is low. For example, in Table 4, 

Hour 1, we see two intervals where the common 

signature count is lower than the initial interval: 

05 and 15. In both these intervals, 274 total 

signatures are generated, with 85 of these 

signatures for each interval not found in the 

initial pool. 

 

4.2 VPSW 
 VPSW, the breakmark identification 

scheme, faired poorly in testing. Because of the 

difficulty in isolating general use breakmarks 

([5] makes no specific recommendations for 

breakmarks, only suggesting in note 6 that 

monitors choose them independently of one 

another), and the variance of data before the 

breakmarks, fingerprint retention rates were 

exceptionally poor. Limited success was 

achieved using a series of NOP instructions as a 

break-mark, with a few fingerprints from the 

Blaster worm retained. However, the modified 

version i.e., VPMB, works extremely well 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3. Signatures common to the initial retention 

period - Welchia 

 

against polymorphic traffic. To test this method, 

multiple polymorphic versions of the Blaster 

worm, Welchia worm, and WebDAV Search 

exploit were created using the ADMmutate [18] 

kit. Another experiment was devised with two 

intents: (a) to see if consistent signatures are 

produced between different polymorphic 

versions of the same exploit, and (b) to see if the 

false positive rate will increase if more 

fingerprints are retained.  In this experiment, two 

polymorphic worm packets of each type were 

injected into every 5-minute interval of the two 

hour-long traces and the VPMB scheme is used 

to see how many signatures are retained and how 

many worm packets of these 3 types are retained. 

 Table 4 shows the success and false-

positive rate of the VPMB scheme. Using the 20-

byte look-ahead window size, the VPMB scheme 

was able to identify all the worm packets that 

belong to these three types of malicious traffic. 

In testing, all six additional pieces of malicious 

traffic were detected, with only a single signature 

being generated for each distinct type. The 



performance of VPMB is worse with a 10-byte 

or a 5-byte look-ahead window.  

 

 

 

 

 

 

 

 

 

 

 

 
Table 5. Hour 1: VPMB, false positives - only three 

signatures are expected (signatures are cumulative 

 

Additional packets are classified as “worm” 

packets because the generated signatures are not 

specific enough; for each time interval, only 

three signatures are expected. In Table 5, the 

false positive rate is the highest with a 5-byte 

look-ahead window, yet, even at this low look-

ahead size, the worst interval, at '40', only adds 

13 false signatures. With a 10-byte window, only 

one false signature is added at times '25' and '30'. 

Finally, with a 20-byte window, all false 

positives are eliminated.  

 

5. Conclusion 
 In this paper we introduce three sliding-

window based worm signature generation 

schemes: (a) method one, the fixed partition 

sliding window scheme (FPSW), (b) method 

two, the variable-length partition sliding window 

scheme (VPSW), and (c) method three, the 

variable-length partition with multiple 

breakmarks scheme (VPMB). Our evaluation 

indicates that the VPMB scheme is promising. 

 Several areas of further research for the 

sliding-window based methods have been 

identified over the course of this work. The 

classification scheme utilized in this paper is 

quite primitive, thus, more work must be made 

on finding new ways to retain useful fingerprints 

in an accurate and computationally efficient 

manner. The preliminary results from the 

clustering experiment are promising, and work 

will continue to pursue this approach in the 

future, implementing data mining and machine 

learning techniques. The ability of the VPMB 

scheme to detect polymorphic traffic is good, but 

the evolution of polymorphic techniques 

continues. Further toolkits and methods that can 

be used to obscure exploit code must continue to 

be evaluated, so the methods to combat them 

may advance. 
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