
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Pre-print of article that appeared at CISS 2006.

The published article can be accessed from:
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4068038

The Strength of Syntax Based Approaches to

Dynamic Network Intrusion Detection

W. Scheirer, M. Chuah

{wjs3, chuah}@cse.lehigh.edu

Department of Computer Science and

Engineering

Lehigh University

Abstract - In this paper, we investigate three

syntax based, sliding window schemes for

automatic intrusion detection. The first method,

the fixed partition sliding window scheme

(FPSW), uses a fixed window size and a one-

byte sliding window. The second method,

referred to as variable-length partition sliding

window (VPSW), uses a variable length window

with a predetermined breakmark. The third

method, referred to as variable-length partition

with multiple breakmarks (VPMB), is similar to

VPSW except that multiple breakmarks are used.

The results indicate that while the FPSW and

VPSW methods are effective for detecting

worms with mild changes in the worm code

contents, VPMB is suitable for detecting fully

polymorphic worms.

1. Introduction
The intrusion detection system (IDS)

has become extremely important in recent years

to combat a rapid increase in malicious software.

On the network, modern worms can spread very

quickly and widely, thus automatic response is

required to contain outbreaks. Two of the most

popular signature based IDS systems are Snort

[1] and Bro [2]. Each was designed to be more

adaptable to emerging threats, but only through

human intervention.

 Computers allow us to represent the

same data in variety of different ways. This

useful flexibility turns against us in IDS, where

reliable pattern matching is desirable. Figure 1 is

a simple example of Unicode being used to

encode a single character to thwart a static IDS

signature. IDS authors responded to such

encoding attacks by including decoders for

popular methods. This, however, proves to be

inadequate, as a multitude of clever encoding

schemes exist, allowing an attacker to craft

special URLs with whitespace, directory

traversals (i.e ../../../), and local directory access

(i.e. ./././) with ease.

Figure 1. unicode encoding of ‘a’ in HTTP GET

request

Moreover, attackers are certainly not

limited to attacks with ASCII features. Malicious

binary code may be encrypted with a unique key,

completely obscuring its purpose. This form of

obfuscation is a type of Polymorphism. It is also

possible to alter the very structure of binary

code, through code transposition, equivalent

instruction substitution, jump insertion, NOP

insertion, garbage instruction insertion, and

register reassignment. This is known as

Metamorphism. Thus, we are presented with the

key question this paper attempts to address: How

can we reliably detect threats on the network in

the face of such dynamic malicious traffic?

 In order to answer this question, we will

investigate the syntax based, sliding window

approach to dynamic IDS, and evaluate three

competing schemes. The rest of the paper is

organized as follows: In Section 2, we describe

some related work and discuss how several

particular works motivate this research. In

Section 3, we describe the motivation and design

behind each of the sliding window methods.

With this knowledge, we proceed to Section 4,

where each method is evaluated using an

extensive set of real network traffic. Finally, we

summarize our findings and discuss some future

work that we intend to explore in Section 5.

2. Related Work
In [3], the authors present the case for

collaborative intrusion detection system where

intrusion detection nodes cooperate to determine

if a network attack is taking place and take

corrective actions if it does. Others have sought

to use statistical approaches to detect worm

outbreaks. In [4], the authors propose a method

to identify a worm victim by observing if the

number of scans per second it performs exceeds

a certain threshold. The numbers of worm

victims observed in successive windows are then

compared to the numbers predicted using a

typical worm spread model and if they match,

then a worm outbreak is declared.

Sliding window schemes [5] [6] are

based on the premise that some portion of

malicious code will inevitably be invariant,

despite attempts at obscuring its true nature to

avoid detection. Autograph [5] was the first

system of this type to emerge, and based its

detection on content-based signature generation

driven by breakmark delimited windows. As a

follow-up to Autograph, Earlybird [6] used the

same content-based signature methodology, but

improved the architecture as a NIDS. Refinement

takes place in what the authors term "content

sifting," whereby precise signatures are

generated in a more efficient method (through

the use of optimized data structures) than

Autograph.

3. Sliding-Window Schemes
In this section, we describe a prototype

system that has been built to automatically

generate new worm signatures. This approach

builds upon the previous work done in [5] and

[6]. The approaches in [5] and [6] are based on

the facts that a certain portion of the content in a

worm packet is invariant and that the spreading

of a worm is atypical of Internet applications. In

[5], a variable-length sliding window of size b

bytes is used to generate Rabin fingerprints of

suspicious worm packets. The Rabin fingerprint

[7] [8] is a one-way hashing algorithm that

produces a 64-bit digest output. Such

fingerprints allow us to do clustering easily. The

payload of the packet is partitioned into multiple

chunks when a chosen breakmark is detected. In

[6], a fixed-length sliding window is used

instead. However, there is no comparison of

whether a fixed-length partition or a variable

length partition is better in [5] or [6]. In this

work, we compare both the fixed-length and

variable-length partition approach. In addition,

the work in [5] is extended by using a set of

breakmarks rather than just a single breakmark.

3.1 Method 1 - Fixed Partition Sliding

Window (FPSW) Scheme

 Method 1, the FPSW scheme,

incorporates a fixed window size and a one-byte

window sliding. The premise is simple - a series

(perhaps large, depending on window size) of

fingerprints is generated as the window slides

down the payload of a packet. We will see

common signatures between different packet

payloads if their contents are identical or similar.

If the window size is small enough, common

data portions can be isolated, despite the

variation in the overall payloads. This is useful

for the dynamic detection of new worm variants

(e.g. W32.Blaster versus W32.Blaster.H). Figure

2 shows the operation of the sliding window

using FPSW. The segments in f0, f1, and f2 will

all be fingerprinted.

Figure 2. Three instances of an 8-byte sliding

window, beginning at ‘00’ for the FPSW scheme

 One important decision related to this

approach is choosing a proper window size. If

the window size is very small (just a few bytes),

the false positive rates will be higher. Certain

short sequences are bound to appear in benign

traffic as well as in malicious code. For example,

"GET /" is typically at the beginning of a basic

web request, but could also be followed by

malicious exploit code. A 5-byte window would

match both to the same fingerprint. In addition,

the amount of signatures generated is always

related to the window size. Smaller windows will

produce more fingerprints, thus placing a higher

burden on storing and searching.

3.2 Method 2 - Variable-length Partition

 Sliding Window (VPSW) Scheme

 Method two, the variable-length

partition sliding window scheme (VPSW),

incorporates a one-byte sliding window approach

until a predetermined breakmark is reached. This

is similar to FPSW, except now the window

Figure 3. Example of VPSW operation with a

breakmark of "22 0a 18"

grows until it reaches a pre-determined

breakmark. When a breakmark match occurs, the

fingerprint is generated, and the window begins

to grow again from the stopped position. VPSW

is similar to the scheme introduced in [5] except

that different breakmarks can be configured.

Figure 2.4 shows the operation of VPSW’s

sliding window. In this example, our breakmark

is "22 0a 18". f0 displays a sliding window in

progress, with the last three bytes (’41 22 0a’)

representing the break-mark match attempt. It

fails, so the window is shifted over one byte. At

f1, the last three bytes of the window match the

breakmark, causing a fingerprint to be generated.

Following this, the window begins again in f2,

one byte directly after the previous breakmark

match.

In practice, this method turns out to be a

poor performer. The variance of data before the

breakmark makes it much harder to produce

repeatable signatures. Certain worms such as

Nimda contain dynamic content, while different

versions of the same code also have variations -

all of which may occur before a good static

breakmark. Another problem is in choosing an

appropriate breakmark. Selecting a series of

NOP instructions (0x90 for x86) is a good choice

for detecting specific types of overflow exploits,

but certainly it does not cover every type of

malicious traffic. Thus, much effort is required

for selecting appropriate breakmarks. Despite

these shortcomings, it is important that we

introduce the VPSW scheme because a slight

variation of this method turns out to be excellent

for detecting polymorphic exploits. This third

method is explained next.

3.3 Method 3 - Variable-length Partition

with Multiple Breakmarks Scheme

(VPMB)

Method three, the variable-length

partition with multiple break-marks scheme

(VPMB), is identical to Method 2, except that

the breakmark is tuned to match a series of NOP-

like instructions. In a polymorphic exploit, we

often see a static region initiating a request (for

example, a web based exploit may begin with a

normal HTTP GET request), followed by a

region of instructions that function as NOP

equivalents [9]. By using an adjustable look-

ahead size to match these NOP-like instructions,

we can reliably generate consistent fingerprints

for the static regions preceding the NOP-like

instructions. In this method, using a look-ahead

window of size w bytes, we search and see if all

the bytes in this window can be found in a set of

76 breakmarks that have been identified. If they

are, then we will generate a fingerprint using all

the bytes that appear before this look-ahead

window. After that, we begin a new search using

a new window that begins 1 byte after the

previously matched position. Figure 4 shows the

operation of VPMB with three different window

sizes: 5 bytes, 10 bytes, and 15 bytes. The same

initial byte region is isolated in all three,

producing one, consistent signature.

Figure 4. VPMB with three different window sizes

An appropriate choice of look-ahead

size is required to reduce the false positives.

Similar to the FPSW's dilemma, choosing a

smaller size will increase false positives. But

how small is too small? Through testing (as will

be shown later), it has been determined that a

size of 20 bytes reduces false positives to a

minimum. Tested cases with values greater than

20 did not result in further reductions of false

positive but incurred additional processing cost.

Insight as to why 20 is the "magic" look-ahead

size is the following - the probability of finding a

grouping of NOP-like instructions in benign

traffic drops considerably as the window size is

increased. But in actual exploits, NOP regions

tend to be larger than 20 bytes (so guessing an

address back into the stack is a simpler process).

Thus, 20 represents the point at which false

positives drop to a minimum, and true positives

don't require excess processing time.

4. Evaluation
To compare between the three

approaches described in Section 3 and to

evaluate the false positive/false negative rates of

such a worm detection system, each of these

algorithms has been implemented and applied to

two one-hour traces that are extracted from a

whole day's traffic trace that was kindly made

available by the WAIL research group [10]. In

this whole-day trace, traffic was observed from

two /16 subnets (16K addresses) on two adjacent

class B networks. Traffic from only one class C

network contained within this trace is considered

in this study. The total packet count for each 1-

hour trace is 23,554 and 6,834 respectively. Each

1-hour trace is further divided into 5-minute

intervals. Signature generation is performed on

the traffic obtained in every 5-minute interval.

To minimize the number of packets that the

signature generation module needs to process,

some simple filtering is performed on the trace:

(i) only incoming packets destined for the target

network are considered, (ii) only TCP packets

with the PUSH flag set are taken for fingerprint

generation. The methods, however, can be used

for other attack packets (i.e. UDP-based attacks)

as well. All data in each packet is considered for

analysis (i.e., no static SNAPLEN is utilized).

4.1 FPSW
As previously mentioned, because of

the potential large number of fingerprints that

can be generated using the FPSW scheme, it is

desirable to find ways to reduce the number of

signatures to be retained for future intrusion

detection purposes. To accomplish this, the

simple IP address dispersion algorithm proposed

in [6] has been implemented. This algorithm is

well suited for detecting rapidly spreading

worms, by observing the frequency of distinct

source and destination IP addresses of packets

carrying a particular fingerprint. If a single

fingerprint is sent from at least n distinct source

IPs, and is destined to at least n distinct

destination IPs, then, it is retained. A further

trimming of the fingerprint pool is performed for

each test by discarding fingerprints generated

from data chunks with a high prevalence of

NULL bytes ({00, 00, 00, 00, 00, 00, 00, 80}).

Figure 5. Signature counts for 1-hour trace

These fingerprints are far too general, and have

little value for detecting malicious traffic. In

conjunction with retaining the fewest possible

signatures, we want to maximize the amount of

useful signatures retained. To do so, the

Levenshtein Edit Distance algorithm [11] has

been chosen to find similar fingerprints (amongst

those that have not been retained) to the ones that

have been retained for each 5 minute interval

Figure 5 shows the result of applying

the FPSB scheme against an hour long trace.

Each graph interval (a five minute portion from

the trace) increases cumulatively, with only new

signatures being added to the total pool.

Classification (using the algorithm described

above) was performed at two different threshold

intervals (n: n = 3 and n = 5. From the graph, we

see that thousands of signatures are discarded at

n = 3, while only a slight decrease occurs from n

= 3 to n = 7. When the clustering algorithm (also

described above) is applied at both classification

thresholds, we see a slight increase in the

signature pool, as expected. Via clustering, a

total of 274 signatures are added to the signature

pool, with about 23 signatures added per 5-

minute interval. Thus, we are able to tune the

signature pool accordingly, with the maximum

amount of useful signatures retained.

 From what has been shown thus far, it is

clear that FPSW has the potential to generate a

large number of signatures. Tables 1 and 2

provide us with insight into the dynamics of

signature creation and retention. In both tables,

the data has been condensed into six 10-minute

windows. Table 1 presents the results for the

formula Δpkts / Δnewflow, where Δpkts

represents the additional (not total) packets from

the new flows added to the total pool at each

time interval, and Δnewflow represents the

additional (not total) flows added at each time

interval. In essence, this formula gives us an

average number of packets added for each flow

at each time interval. Overall, only a few packets

are added at each time interval for both hours,

with 2.66 packets added per flow on average for

the first hour, and 3.05 packets for the second

hour. Thus, the malicious traffic considered here

does not produce a heavy flow of packets per

connection. However, this is not a general trend

that may be applied to all malicious traffic -

denial of service attacks in particular may

generate a very large packet pool per connection.

Table 1. (Δpkts / Δnewflow)

Table 2 presents the results for the

formula Δs / Δnewflow, where Δs represents the

additional (not total) signatures added to the total

pool at each time interval, and Δnewflow

represents the additional (not total) flows added

at each time interval. This formula gives us the

average number of signatures added to the total

signature pool per flow. All results for both

classification intervals with and without

clustering applied are included. Overall, only a

small amount of new signatures is added by each

flow.

Table 2. (Δ s / Δnewflow)

There are several interesting features

present in this table. First, we notice the largest

amount of new signatures added on average

occurs at the first time interval, 00. This

indicates a large amount of repetition in

generated signatures at the time intervals that

follow; which by time 50, no additional

signatures have been added. Second, somewhat

counterintuitive results are present at the

threshold intervals where n = 7. From data

presented in the earlier tables and graphs, we

expect the numbers here to be lower than that of

their n = 3 counterparts. In Table 2, we see

several instances (Hour 1: 20, Hour 2: 40) where

this is not the case. The explanation for such

behavior is this - earlier flows where signatures

were retained at n = 3 have been discarded by n

= 7. However, these same signatures have been

generated by retained flows at later time

intervals. That is, the same packet data exists at

multiple time locations, thus producing the same

signatures.

Now that a pool of signatures has been

generated, we must find out how relevant they

are to detecting malicious traffic. Ideally, we

would like the signatures generated early on to

detect future instances of the same (or similar)

threat. In practice, this is what occurs. The first

number in each entry of Table 3 displays

signatures from each time interval that are

common to the initial retention period (time '00')

for Welchia activity. The second number

represents the total signature count. In Table 3,

the greatest variance from the first time interval

shown is 23 for hour 1, and a very large 275 for

hour 2.

Investigation into why large variances may

occur reveals that the rate of active protocol

scanning by malicious software is the culprit. As

opposed to stealth-type scanning performed by

tools such as nmap (which may not even create a

full TCP connection), active protocol scanning

will probe a target port with data; if a desired

response is received, exploitation will

commence. FPSW will generate signatures for

the scans, as well as the exploit attempts. Thus, a

lull in scan activity will create variance in the

count of similar signatures observed. The

amount of additional signatures added to those

already observed is low. For example, in Table 4,

Hour 1, we see two intervals where the common

signature count is lower than the initial interval:

05 and 15. In both these intervals, 274 total

signatures are generated, with 85 of these

signatures for each interval not found in the

initial pool.

4.2 VPSW
 VPSW, the breakmark identification

scheme, faired poorly in testing. Because of the

difficulty in isolating general use breakmarks

([5] makes no specific recommendations for

breakmarks, only suggesting in note 6 that

monitors choose them independently of one

another), and the variance of data before the

breakmarks, fingerprint retention rates were

exceptionally poor. Limited success was

achieved using a series of NOP instructions as a

break-mark, with a few fingerprints from the

Blaster worm retained. However, the modified

version i.e., VPMB, works extremely well

Table 3. Signatures common to the initial retention

period - Welchia

against polymorphic traffic. To test this method,

multiple polymorphic versions of the Blaster

worm, Welchia worm, and WebDAV Search

exploit were created using the ADMmutate [18]

kit. Another experiment was devised with two

intents: (a) to see if consistent signatures are

produced between different polymorphic

versions of the same exploit, and (b) to see if the

false positive rate will increase if more

fingerprints are retained. In this experiment, two

polymorphic worm packets of each type were

injected into every 5-minute interval of the two

hour-long traces and the VPMB scheme is used

to see how many signatures are retained and how

many worm packets of these 3 types are retained.

 Table 4 shows the success and false-

positive rate of the VPMB scheme. Using the 20-

byte look-ahead window size, the VPMB scheme

was able to identify all the worm packets that

belong to these three types of malicious traffic.

In testing, all six additional pieces of malicious

traffic were detected, with only a single signature

being generated for each distinct type. The

performance of VPMB is worse with a 10-byte

or a 5-byte look-ahead window.

Table 5. Hour 1: VPMB, false positives - only three

signatures are expected (signatures are cumulative

Additional packets are classified as “worm”

packets because the generated signatures are not

specific enough; for each time interval, only

three signatures are expected. In Table 5, the

false positive rate is the highest with a 5-byte

look-ahead window, yet, even at this low look-

ahead size, the worst interval, at '40', only adds

13 false signatures. With a 10-byte window, only

one false signature is added at times '25' and '30'.

Finally, with a 20-byte window, all false

positives are eliminated.

5. Conclusion
 In this paper we introduce three sliding-

window based worm signature generation

schemes: (a) method one, the fixed partition

sliding window scheme (FPSW), (b) method

two, the variable-length partition sliding window

scheme (VPSW), and (c) method three, the

variable-length partition with multiple

breakmarks scheme (VPMB). Our evaluation

indicates that the VPMB scheme is promising.

 Several areas of further research for the

sliding-window based methods have been

identified over the course of this work. The

classification scheme utilized in this paper is

quite primitive, thus, more work must be made

on finding new ways to retain useful fingerprints

in an accurate and computationally efficient

manner. The preliminary results from the

clustering experiment are promising, and work

will continue to pursue this approach in the

future, implementing data mining and machine

learning techniques. The ability of the VPMB

scheme to detect polymorphic traffic is good, but

the evolution of polymorphic techniques

continues. Further toolkits and methods that can

be used to obscure exploit code must continue to

be evaluated, so the methods to combat them

may advance.
Acknowledgements

We would like to thank Vinod Yegneswaran,

Dr. Paul Barford, and the Wisconsin Advanced

Internet Laboratory for their willingness to share

several network traces that we have used in this

paper.

6. References

[1] M. Roesch, Snort - lightweight intrusion

 detection for networks. LISA ’99 -

 Proceedings of the 13
th

 USENIX conference

 on System administation, Seattle

 Washington, 229-238, 1999.

[2] V. Paxson. Bro: a system for detecting

 network intruders in real-time. Computer

 Networks, Amsterdam, Netherlands, 31 (23-

 24): 2435-2463, 1999.

[3] M. Locasto, J. Parekh, S. Stolfo, A.

 Keromytis, T. Malkin, and V. Misra.

 Collaborative distributed intrusion detection.

 Tech Report CUCS-012-04, Department of

 Computer Science, Columbia University,

 2004.

[4] L. Gao, J. Wu, S. Vangala, and K. Kwiat. An

 effective architecture and algorithm for

 detecting worms with various scan

 techniques. Proceedings of NDSS, 2004.

[5] H. Kim and B. Karp. Autograph: toward

 automated, distributed worm signature

 detection. Proceedings of the 13th Usenix

 Security Symposium, 2004.

[6] S. Singh, C. Estan, G. Varghese, and S.

 Savage. Automated worm fingerprinting.

 Proceedings of the 6th USENIX Symposium

 on Operating Systems Design and

 Implementation, 2004.

 [7] M. O. Rabin, Fingerprinting by Random

 Polynomials, Tech. Rep. TR-15-81, Center

 for Research in Computing Technology,

 Harvard University, 1981.

[8] A. Broder. Some applications of Rabin's

 fingerprinting method. In Renato Capocelli,

 Alfredo De Santis, and Ugo Vaccaro

 editors, Sequences II: Methods in

 Communications, Security, and Computer

 Science, pages 143--152. Springer-Verlag,

 1993.

[9] K2. ADMmutate 0.8.4. Published online at
 http://www.ktwo.ca/ADMmutate-

 0.8.4.tar.gz. Last accessed on 6 Jan.

 2006.

[10] R. Pang, V. Yegneswaran, P. Barford, V.

 Paxson, and L. Peterson. Characteristics of

 Internet background radiation. IMC '04:

 Proceedings of the 4th ACM SIGCOMM

 conference on Internet

[11] V.I. Levenshtein, Binary codes capable of

 correcting spurious insertions and deletions

 of ones, Problems of Information

 Transmission, 1:8-17, 1965.

