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Abstract. Recognition problems in computer vision often benefit from
a fusion of different algorithms and/or sensors, with score level fusion
being among the most widely used fusion approaches. Choosing an ap-
propriate score normalization technique before fusion is a fundamentally
difficult problem because of the disparate nature of the underlying dis-
tributions of scores for different sources of data. Further complications
are introduced when one or more fusion inputs outright fail or have ad-
versarial inputs, which we find in the fields of biometrics and forgery
detection. Ideally a score normalization should be robust to model as-
sumptions, modeling errors, and parameter estimation errors, as well as
robust to algorithm failure. In this paper, we introduce the w-score, a
new technique for robust recognition score normalization. We do not as-
sume a match or non-match distribution, but instead suggest that the top
scores of a recognition system’s non-match scores follow the statistical
Extreme Value Theory, and show how to use that to provide consistent
robust normalization with a strong statistical basis.

1 Introduction
For many different recognition problems in computer vision, the ability to com-
bine the results of multiple algorithms and/or sensors brings significant improve-
ment in overall recognition performance. While there are many approaches and
“levels” of fusion, a widely used approach is score level fusion, where scores from
different recognition algorithms are combined. Since score distributions vary as
a function of the recognition algorithms, and sometimes the underlying sensors,
one must normalize the score data before combining it in score level fusion.

The goal of fusion is to improve recognition accuracy, and hence it is im-
portant that the underlying process be robust. Choosing a robust score normal-
ization technique is often a challenge for several reasons. In the literature, the
term robust has been defined as insensitivity to the presence of outliers (noise)
[1] for the estimation of any necessary parameters. While this definition cap-
tures one property of good fusion, there are more issues than just the parameter
estimation. We define the term robust fusion to be a fusion process (including
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normalization) that is insensitive to errors in its distributional assumptions on
the data, has simple parameter estimation, and a high input failure tolerance.
For this work, simple parameter estimation means there is no dependence on a
large sample set for modeling the match and non-match distributions for each
algorithm, and a very small number of parameters must be estimated exper-
imentally. Failure tolerance means that if one or more recognition algorithms
involved in the fusion process is not producing correct matching results, it does
not strongly impact the final result of fusion. Ideally, we would like a score
normalization that is both robust to failure, and is unencumbered by compli-
cated parameter estimation as score distributions vary. Further, if an algorithm
is repeatedly failing, robust fusion should be able to detect this.

Robustness in score level fusion is strongly impacted by normalization in two
major ways:

1. The varying nature of the underlying distribution of scores across different
recognition algorithms often leads to inconsistency in normalization results.
For example, if a normalization technique assumes the algorithms considered
for fusion produce scores that follow a Gaussian distribution, and at least
one of those distributions is not Gaussian, the results will not be optimal.
The distribution of recognition scores is the result of a complex function of
both the algorithm and the actual data being processed, and it is dangerous
to assume too much about the score distribution.

2. Complications are introduced when one or more sensors or recognition al-
gorithms being considered for fusion fail or are deceived. For recognition
problems, failure occurs when an input sample of a class unknown to the
system is recognized as being part of a known class, or when an input sam-
ple that should be recognized by the system is rejected as being unknown.
The scores produced in these failure scenarios become problematic for nor-
malization techniques, especially when they resemble an “expected” (and
often estimated) match distribution.

In this paper, we introduce a new score normalization approach for robust
fusion based on a probability of confidence that a particular score is not drawn
from the non-match distribution. For an overview, we turn to Figure 1. Based
on the match scores produced by multiple recognition algorithms applied to a
particular object, a post-recognition score analysis [2] [3] is performed to predict
the probability of the scores not being from the non-match distribution. For
this work, we introduce a statistical Extreme Value Theory normalization that
draws these probabilities from the cumulative distribution function of a Weibull
distribution (hence “w-score”). The resulting probabilities from the different
algorithms are the normalized w-scores, which can then be fused together to
produce an overall probability of not being a non-match. In Figure 1, the process
is shown for the case of two algorithms, though it applies to any number of inputs.

Traditional normalization techniques change the location and scale parame-
ters of a score distribution in an ad-hoc manner or based on unproven distribu-
tional assumption. In contrast, our w-score normalization changes raw scores to
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Fig. 1. An overview of the w-score normalization process. Recognition scores are pro-
duced by an algorithm for the given input. An Extreme Value Theory statistical model
(Weibull) is fit to the tail of the sorted scores. The normalization of all data is done
using the cumulative distribution function of the resulting Weibull distribution (hence
w-scores). The w-score is an estimate of the probability of a particular score not being
from the non-match distribution, and hence an ideal normalization for fusion.

probability scores based on a strong statistical theory. This is a new paradigm
for recognition score normalization supporting robust recognition fusion.

We organize the rest of this paper as follows. In Section 2, we discuss the
strengths and weaknesses of common recognition score normalization techniques.
In Section 3, we review the post-recognition score analysis based on statistical
Extreme Value Theory (pre-requisite to our new normalization technique) and in
Section 4, we detail the w-score normalization technique. Finally, we present ex-
perimental results for the w-score on a series of biometric recognition algorithms
and content-based image retrieval descriptors in Section 5.

2 Recognition Score Normalization
2.1 Recognition Systems
There are multiple formal ways to define what exactly a “recognition” task is.
For this work, we consider the general definition of Shakhnarovich et al. [4],
where the task of a recognition system is to find the class label c∗, where pk is
an underlying probability rule and p0 is the input distribution, satisfying

c∗ = argmax
class c

Pr(p0 = pc) (1)

subject to Pr(p0 = p∗c) ≥ 1−δ for a given confidence threshold δ, or to conclude
the lack of such a class (to reject the input). We define probe as the input
image distribution p0 submitted to the recognition system in order to find its
corresponding class label c∗. Similarly, we define gallery to be all the classes c∗

known to the recognition system.
Many systems replace the probability in the above definition with a more

generic “score,” which produces the same answer when the posterior class prob-
ability of the identities is monotonic with the score function. In this case, setting
the minimal threshold on a score effectively fixes δ. We call this rank-1 recogni-
tion, because the recognition is based on the largest score. One can generalize
the concept of recognition, as is common in content-based image retrieval some
biometrics problems and some object recognition problems, by relaxing the def-
inition of success to having the correct answer in the top K responses. Many
researchers use a pseudo-distance measure where smaller scores are better, which
is trivially converted to a “larger is better” approach.
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Fig. 2. The match and non-match distributions for the recognition problem. A thresh-
old t0 applied to the score determines the decision for recognition or rejection. Where
the tails of the distributions overlap is where we find False Rejection and False Recog-
nition. Embedded within the overall distribution is shown a particular set of post-
recognition scores, with 1 match (falsely rejected by the threshold t0) and many non-
match samples.

For analysis, presuming the ground-truth is known, one can define the overall
match and non-match distributions for recognition and the per-instance post-
recognition distributions (see Figure 2) . For an operational system, a threshold
t0 on the similarity score s is set to define the boundary between proposed
matches and proposed non-matches. The choice of t0 is often made empirically,
based on observed system performance. Where t0 falls on each tail of each over-
all distribution establishes where False Rejection (Type I error: the probe has a
corresponding entry in the gallery, but is rejected) or False Recognition (Type
II error: the probe does not have a corresponding entry in the gallery, but is in-
correctly associated with a gallery entry) will occur. The post-recognition scores
in the example yield a False Rejection for the t0 shown.

2.2 Normalization Techniques

Traditional normalization techniques change the location and scale parameters
of a score distribution. Jain et al. [5] define two types of normalizations based
on the data requirements for parameter estimation. In fixed score normalization,
which includes machine learning based approaches, the parameters used for nor-
malization are determined a priori using a fixed training set. This means that
the training set must accurately reflect the score distribution for each recognition
algorithm – any deviation will have an impact on the recognition results. In an
approach that is inline with our desire for simple parameter estimation, adap-
tive score normalization estimates parameters based on the scores at hand for a
particular recognition instance. As a further consideration, a normalization tech-
nique is robust if it is insensitive to outliers. In this section, we briefly describe
various normalization techniques, including the very popular z-score, which we
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use for comparison in all of our experiments in Section 5. For each example, a
set of match scores {sk}, k = 1, 2, . . . , n is considered for normalization.

z-scores are adaptive score normalizations that are computed in a straight-
forward manner. Referring to Equation 2, the normalized score is produced by
subtracting the arithmetic mean µ of {sk} from an original score, and dividing
this number by the standard deviation σ of {sk}. This parameter estimation
makes z-score normalization an adaptive score normalization, but it is possible
to compute z-score normalization as a fixed score normalization if µ and σ are
estimated for the overall distributions of scores produced by different recognition
algorithms. z-score normalization is not robust in the traditional sense, and, as
we show in this paper, is highly impacted by recognition algorithm failure.

s′k =
sk − µ
σ

(2)

tanh-estimators [6] are fixed score normalizations that are considered robust
to noise, but are far more complicated to compute, compared to the adaptive
z-scores. The normalized score is produced by taking the hyperbolic tangent of
a z-score-like calculation. The robust nature of tanh-estimators comes from the
mean and standard deviation estimates, which are computed from a genuine
score distribution that is itself computed from Hampel estimators, making tanh-
estimators fixed score normalizations. The Hampel estimators are based on an
influence function, which makes the normalization robust to noise by reducing
the influence of the scores at the tails of the distribution being considered. The
tail points for three different intervals from the median score of the distribu-
tion must be defined in an ad hoc manner. These parameters can be difficult
to determine experimentally, and if chosen incorrectly, limit the effectiveness of
tanh-estimators. tanh-estimators are robust to noise, but not parameter esti-
mation. Further, tanh-estimators have been shown to produce good results for
noisy data in verification problems [5], but not recognition problems, where the
underlying score distributions are different.

Other important work in score normalization has investigated advanced top-
ics in statistical modeling including: the effect of correlation and variance on
z-scores [7]; client specific normalization related to classifications made with
respect to the Doddington’s zoo effect (which includes failure cases) [8]; cost-
sensitive performance evaluation of hardware and software failure [9]; and effects
related to signal quality [10].

3 Statistical Extreme Value Theory
As we saw in Section 2.1, we can map almost any recognition task into the
problem of determining “match” scores between the input data and some class
descriptor, and then determining the most likely class [4]. Success in a recognition
system occurs when the match is the top score. Failure in a recognition system
occurs when the match score is not the top score (or not in the top K, for
the more general rank-K recognition). With these two definitions in mind, it is
critical to note that the analysis here is done for a single probe at a time, and
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this assessment is not based on the overall “match/non-match” distributions,
such as those in [11] and [12], which include scores over many probes. Rather it
is done using a single probe producing at most one match score mixed in with a
larger set of non-match scores.

We can formalize our analysis as score-based accuracy prediction for rank-
K recognition, determining if the top K scores contain an outlier with respect
to the current probe’s non-match distribution. In particular, let F(p) be the
distribution of the non-match scores that are generated by the matching probe p,
and m(p) to be the match score for that probe. In addition, let S(K) = s1 . . . sK
be the top K sorted scores. We can formalize the null hypothesis H0 of our
prediction for rank-K recognition as:

H0(failure) : ∀x ∈ S(K), x ∈ F(p), (3)

If we can reject H0 (failure), then we predict success.
While some researchers have formulated recognition as hypothesis testing

given the individual class distributions [4], that approach presumes good models
of distributions for each match/class. We cannot model the “match” distribution
here effectively, as we only have one sample per probe, and so the only way to
apply that is to assume a consistent distribution across all probes, which is
questionable. That is the key insight; we don’t have enough data to model the
match distribution, but we have n samples of the non-match distribution —
generally enough for a good non-match modeling and outlier detection. If the
best score is a match it’s an outlier with respect to the rest of the data.

As we seek a more formal approach, the critical question then becomes how
to model F(p), and what hypothesis test to use for the outlier detection. Various
researchers have investigated modeling the overall non-match distribution [12],
developing a binomial model. Our goal, however, is not to model the whole
non-match distribution over the entire population, but rather to model the tail
of what exists for a single probe comparison. The binomial models developed
by [12] account for the bulk of the data, but have problems in the tails, and are
not a good model for a particular probe.

An important observation about the problem we consider here is that the
non-match distribution we seek to model is actually a sampling of scores, one or
more per “class,” each of which is itself a distribution of potential scores for this
probe versus the particular class. Since we are looking at the upper tail, the top
n scores, there is a strong bias in the samplings that impact the tail modeling;
we are interested only in the top similarity scores.

Claiming the tail of a distribution to be an extreme value problem may
appear intuitive. Recent work [13] looking at verification score spaces relies on
this intuition, but does not explain why extrema value theory applies to the
tails of their score distributions. Just being in the tail is not sufficient to make
this an extreme value problem, as one can take the top N samples from any
particular distribution D, which by definition fit distribution D and not any
other distribution. Just considering tails of data is not sufficient justification to
invoke the extreme value theorem, just like taking a sample from a distribution
does not necessarily invoke the central limit theorem.
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Fig. 3. Why our score analysis is an extreme value problem. One can view this problem
as considering a collection of portfolios composed of sub-sets of the gallery, each of which
produce scores. One portfolio contains a match-score (red), the rest are non-matching
scores (brown). The best of the best of the portfolio scores are those that show up in
the tail of the post-recognition score distribution — leaving us with an extreme value
problem for the data we consider. The best score in the tail is, if a match, an outlier
with respect to the EVT model of the non-match data.

We can consider the recognition problem as logically starting with a collection
of portfolios, each of which is an independent subset of the gallery or recognition
classes. This is shown in Figure 3. From each portfolio, we can compute the
“best” matching score in that portfolio. We can then collect the subset where
all of these scores are maxima (extrema) within their respective portfolios. The
tail of the post-match distribution of scores will be the best scores from the
best of the portfolios. Looking at it this way we have shown that modeling the
non-match data in the tail is an extreme value problem. With this formalized
view of recognition, we can invoke the Extreme Value Theorem: [14]:

Extreme Value Theorem 1 Let (s1, s2, . . .) be a sequence of i.i.d samples. Let
Mn = max{s1, . . . , sn}. If a sequence of pairs of real numbers (an, bn) exists such
that each an > 0 and

lim
x→∞

P

(
Mn − bn

an
≤ x

)
= F (x) (4)

then if F is a non-degenerate distribution function, it belongs to one of three
extreme value distributions.

Thus, a particular portfolio is represented as the sampling (s1, s2, . . .), drawn
from an overall distribution of scores S. Theorem 1 tells us that a large set of
individual maximums Mn from the portfolios must converge to an extreme value
distribution. As portfolio maxima fall into the tail of S, they can be most accu-
rately modeled by the appropriate extreme value distribution. The assumptions
necessary to apply this for a recognition problem are that we have sufficiently
many classes for the portfolio model to be good enough for the approximation
in the limit to apply, and that the portfolio samples are approximately i.i.d..

The EVT is analogous to a central-limit theorem, but with minima (or max-
ima) over the data. Extreme value distributions are the limiting distributions
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that occur for the maximum (or minimum, depending on the data representa-
tion) of a large collection of random observations from an arbitrary distribution.
Gumbel [15] showed that for any continuous and invertible initial distribution,
only three models are needed, depending on whether you are interested in the
maximum or the minimum, and also if the observations are bounded from above
or below. Gumbel also proved that if a system/part has multiple failure modes,
the failure is best modeled by the Weibull distribution. The resulting three types
of extreme value distributions can be unified into a generalized extreme value
(GEV) distribution given by

GEV (t) =

{
1
λe
−v−1/k

v−(1/k+1) k 6= 0
1
λe
−(x+e−x) k = 0

(5)

where x = t−τ
λ , v = (1 + k t−τλ ) where k, λ, and τ are the shape, scale, and

location parameters respectively. Different values of the shape parameter yield
the extreme value type I, II, and III distributions. Specifically, the three cases
k = 0, k > 0, and k < 0 correspond to the Gumbel (I), Frechet (II), and Reversed
Weibull (III) distributions. Gumbel and Frechet are for unbounded distributions
and Weibull for bounded. Equation 6 gives the CDF of a Weibull.

CDF (t) = 1− e−( tλ )k (6)

If we presume that match scores are bounded, then the distribution of the
minimum (or maximum) reduces to a Weibull (or Reversed Weibull) [16], inde-
pendent of the choice of model for the individual non-match distribution. For
most recognition systems, the distance or similarity scores are bounded from
both above and below. If the values are unbounded, the GEV distribution can
be used. Most importantly, we don’t have to assume a distributional model for
overall match or non-match distributions. Rephrasing, no matter what model
best fits each non-match distribution, be it a truncated binomial, a truncated
mixture of Gaussians, or even a complicated but bounded multi-modal distribu-
tion, with enough samples and enough classes the sampling of the top-n scores
always results in a Weibull distribution.

Given the potential variations that can occur in the class for which the probe
image belongs, there is a distribution of scores that can occur for each of the
classes in the gallery. Figure 3 depicts the recognition of a given probe image
as implicitly sampling from these distributions. Our method takes the tail of
these scores, which are likely to have been sampled from the extreme of their
underlying portfolio, and fits a Weibull distribution to that data. Given the
Weibull fit to the data, we can determine if the top score is an outlier, by
considering the amount of the cumulative distribution function that is to the
right of the top score.

4 Normalization via w-scores
With the necessary theory covered, we can describe the process for computing
w-scores (Weibull-score, for the statistical fitting that serves as its basis) for
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Algorithm 1 w-score Normalization Technique
Require: A collection of scores S, of vector length m, from a single recognition algo-

rithm j;
1: Sort and retain the n largest scores, s1, . . . , sn ∈ S;
2: Fit a GEV or Weibull distribution WS to s2, . . . , sn, skipping the hypothesized

outlier;
3: while k < m do
4: s′k = CDF(sk,WS)
5: k ← k + 1
6: end while

score normalization. The exact process for computing w-score normalization is
given in Algorithm 1. The w-score re-normalizes the data based on its formal
probability of being an outlier in the extreme value “non-match” model, and
hence its chance of being a successful recognition. This is an adaptive score
normalization; we only require the scores from a single recognition instance for
a particular recognition algorithm. w-scores are very robust to noise and failure.

As w-scores are based on the fitting of the Weibull model to the non-match
data of the top scores, an issue that must be addressed is the impact of any
outliers on the fitting. For rank-1 fitting, where the top score is the expected
match data, this bias is easily reduced by excluding the top score and fitting
to the remaining n − 1 scores from the top n. If the top score is an outlier
(recognition is correct), then excluding it does not impact the fitting. If the top
score was not a match, including this recognition in the fitting will bias the
distribution to be broader than it should, which will produce lower probability
scores for the correct match and most of the non-matches. In addition, we must
address the choice of n, the tail size to be used in fitting. This tail size represents
the only parameter that must be estimated for w-scores. Including too few scores
might reduce accuracy, including too many items could impact assumptions of
portfolio sampling. However, as we show in Section 5, even very small tail sizes
(3 and 5) produce good normalization. That is consistent with work in other
fields [14], where 3-5 is a very common fitting size range for Weibulls.

Once the fitting has taken place, we have all of the information necessary to
complete the normalization. For every gallery class i, let score s′i,j be its nor-
malized score in the collection of scores S for algorithm j. We use the CDF
defined by the parameters of the fitting WS to produce the normalized proba-
bility score s′i,j (we note that in Algorithm 1, the normalization process follows
the sorted list of scores for a single recognition algorithm; s′i,j is a score-index
representation for fusion). We then define w-score fusion as

fi =
∑
j

s′i,j . (7)

Alternatively, similar to Equation 1, one can consider the sum of only those
items with a w-score (probability of success) above some given threshold δ, or
could consider products or likelihood ratios of the w-scores.
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Algorithm 2 w-score Error Detection For Fusion
Require: A collection of w-scores S′n, where n is the number of algorithms to fuse,

and the collection has m different score vectors for each algorithm;
Require: Algorithm FRR/FAR at current settings or ground-truth for each recogni-

tion instance;
Require: A significance threshold ε and an error percentage threshold T ;
1: while i < m do
2: while j < n do
3: f1 ← f1 + s′i,j,1.
4: end while
5: if not a match then
6: if f1 ≥ n× ε then
7: PossibleMatches ← PossibleMatches +1
8: end if
9: end if

10: i← i+ 1
11: end while
12: if PossibleMatches ≥ mT then
13: return System Error Detected
14: end if

The w-score fusion possesses a unique robust property, providing built-in
error detection. An inverse Weibull allows us to estimate the “confidence” of
particular measurement (refer to the hypothesis test of Section 3). Considering
the probabilities for the top score for each algorithm, we can determine if it is
highly likely that the final fused score f1 is not a non-match; if a particular
algorithm consistently fails (or the ground-truth shows it is not failing), we have
evidence of a possible error, most probably some type of data misalignment.
Algorithm 2 describes the process of the error detection. A count of the possible
matches is kept, and if it exceeds T percent, we declare system error.

We have found this error detection property to be useful for indicating three
possible errors: (1) the Weibull fitting is inaccurate for valid score data (due to
a mis-estimated tail size) (2) invalid score data (from parsing errors) produced a
CDF that returns an improbably large number of high w-scores; (3) an error is
present in alignment or the ground-truth labeling (off-by-one errors due to bad
pre-processing). To our knowledge, no other fusion technique has this property.

5 Experimental Results
In this section, we present experimental results for our w-score method on a
series of biometric recognition algorithms and content-based image retrieval de-
scriptors. We compare the w-score approach to the well known z-score normal-
ization. z-score normalization remains one of the most popular normalization
techniques out there (a search for “z-score” using Google scholar returns 102,000
scholarly works), because of its theoretical performance on Gaussian data, and
its straightforward parameter estimation. Fixed score normalizations such as
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tanh-estimators or machine learning based approaches are not considered for
the reasons given in Section 2.2.

5.1 Biometric Recognition

For our first set of experiments, we tested a series of biometric recognition al-
gorithms from the NIST BSSR1[17] biometric score set. The data set consists
of scores from 2 face recognition algorithms (labeled C & G) and 1 fingerprint
recognition algorithm applied to two different fingers (labeled LI & RI). BSSR1’s
multibiometric subset contains 517 score sets for each of the algorithms, with
common subjects between each set. BSSR1 also contains individual score sub-
sets for all algorithms, where the scores do not have common subjects between
them. Out of this individual score set data, we created a “Chimera” data set
with 3000 score sets and consistent labeling across all algorithms. This was done
to address the limited nature of the true multibiometric set, where fusion pushes
the recognition rate close to 100% for even weak normalizations.
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Fig. 4. A graphical summary of all of the results presented in this paper. In all cases,
w-scores reduce the margin of error after fusion, when compared to z-scores (baseline),
for a variety of biometric recognition algorithms and CBIR descriptors.

We performed two different types of experiments on this data. All results
are presented as a percentage of error reduction (improvement) compared to
z-scores, the most popular type of adaptive score normalization, calculated as

%reduction = (%ez −%ew)/%ez (8)
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where %ez is the percentage of incorrect rank-1 results for z-score fusion, and
%ew is the percentage of incorrect rank-1 results for w-score fusion.

For the first experiment, we fused a variety of face and fingerprint recognition
algorithms. We note that in normalization and fusion, performance varies as a
function of the data considered. Thus, we only considered the scores equal to
a percentage of the total number of classes, expressed as %c∗. This threshold
is independent of the Weibull fitting, and is applied to both the w-score and
z-score. While we show results for experiments with a consistent percentage of
classes for w-scores and z-scores, we note that in our broader experimentation,
we were always able to achieve better performance than z-scores when choosing
the correct tail size for fitting, and fusing scores within the tail used for fitting.
The tail size used for fitting for all biometrics experiments in this paper is 5.

Algorithm Improve %c∗

C & LI 65.9% 2.0%

C & RI 25.0% 2.0%

G & LI 57.7% 2.0%

G & RI 22.2% 2.0%

Chimera C & G 49.1% 0.2%

Chimera C & LI 48.1% 0.2%

Algorithm Improve %c∗

Chimera C & RI 59.1% 0.2%

Chimera G & LI 42.4% 0.2%

Chimera G & RI 54.3% 0.2%

Chimera C & G & LI 38.9% 0.2%

Chimera C & G & RI 35.3% 0.2%

Table 1. Rank-1 fusion results, expressed as the percentage of error reduction com-
pared to z-scores, for the BSSR1 multibiometric and the BSSR1 “Chimera” data sets.

The second experiment tests fusion behavior in a failure scenario, where rank-
1 recognition for at least one of the algorithms is 0%. For biometrics, this may
be thought of as an “impostor” test, where a subject is trying to actively defeat
the recognition system (consider the possibility of a facial disguise that causes a
face algorithm to fail, but has no effect on a fingerprint recognition algorithm).
Results for the BSSR1 multibiometric set and the BSSR1 Chimera set are given
in Tables 1 & 2. w-scores have a clear advantage over z-scores for regular fusion,
and a significant advantage in cases where a recognition algorithm is failing.

Algorithm Improve %c∗

*C & LI 63.6% 2.0%

*C & RI 71.8% 2.0%

*G & LI 60.6% 2.0%

*G & RI 63.6% 2.0%

Chimera *C & LI 57.2% 0.3%

Chimera *C & RI 71.3% 0.3%

Algorithm Improve %c∗

Chimera *G & LI 57.5% 0.3%

Chimera *G & RI 70.1% 0.3%

Chimera LI & *RI 54.4% 0.3%

Chimera RI & *LI 46.2% 0.3%

Chimera *C & *G & LI 55.8% 0.3%

Chimera *C & *G & RI 68.9% 0.3%

Table 2. Rank-1 fusion results, expressed as the percentage of error reduction com-
pared to z-scores, for the BSSR1 multibiometric and the BSSR1 “Chimera” data sets,
fusing with failing algorithms (marked with *). Note the significant reduction in error.
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5.2 Content Based Image Retrieval
To show the broader applicability of w-score normalization, we also tested a se-
ries of simple CBIR descriptors [18]. Data from the Corel “Relevants” set [19],
containing 50 unique classes, and the INRIA “Holidays” set [20], containing 500
unique classes. Using a variety of descriptors, we generated 1624 score sets for
Corel Relevants and 1491 score sets for INRIA Holidays. In total, we tested 47
different combinations of descriptors across all experiments, but due to space
constraints, we only show four different representative combinations. The exper-
iments are identical to those of the biometric sets in Section 5.1. Results for the
Corel Relevants set and the INRIA Holidays set are given in Tables 3 & 4. We
note that in all of our fusion experiments with CBIR descriptors, w-scores out-
performed z-scores when the appropriate tail size was chosen for Weibull fitting,
which is consistent with our biometric results. The tail sized used for fitting for
all CBIR experiments is 3.

CBIR Algorithm Improve %c∗

Relevants csd & gch 20.8% 6.0%

Relevants csd & jac 27.5% 6.0%

Relevants cwhsv & cwluv 14.9% 6.0%

Relevants cwhsv & jac 17.5% 6.0%

CBIR Algorithm Improve %c∗

Holidays csd & gch 8.9% 0.6%

Holidays csd & jac 6.1% 0.6%

Holidays cwhsv & cwluv 7.6% 0.6%

Holidays cwhsv & jac 9.3% 0.6%

Table 3. Rank-1 CBIR fusion results, expressed as the percentage of error reduction
compared to z-scores, for the Corel Relevants and INRIA Holidays data sets. We note
that fusion performance here is relative to data set difficulty.

CBIR Descriptor Improve %c∗

Relevants *csd & gch 40.3% 6.0%

Relevants csd & *jac 35.5% 6.0%

Relevantscwhsv & ∗cwluv 29.8% 6.0%

Relevants cwhsv & jac 39.1% 6.0%

CBIR Descriptor Improve %c∗

Holidays *csd & gch 11.1% 0.6%

Holidays csd & *jac 13.9% 0.6%

Holidays cwhsv & ∗cwluv 11.0% 0.6%

Holidays ∗cwhsv & jac 12.3% 0.6%

Table 4. Rank-1 CBIR fusion results, expressed as the percentage of error reduction
compared to z-scores, for the Corel Relevants and INRIA Holidays data sets, fusing
with failing algorithms (marked with *). Note the significant reduction in error for this
experiment, which is consistent with the biometric results presented in Table 2

6 Conclusion
In this paper, we have introduced a theory of post-recognition score analysis
based on statistical Extreme Value Theory, and used this theory to develop
our new w-score adaptive score normalization. Through our analysis, we showed
that no matter what model best fits each non-match distribution, with enough
samples and enough classes, the sampling of the top-n scores always results in
a Weibull distribution. With this knowledge, we developed a method that takes
the tail of these scores, which are likely to have been sampled from the extreme
of their underlying sub-sets from the gallery, and fits a Weibull distribution to
that data; the CDF of the resulting distribution allows us to normalize the entire
score sequence. In essence, the w-score normalizes scores to a probability score
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reflecting the confidence of the score not being a non-match. Results on a wide
range of biometric and CBIR data show that the w-score is superior to the z-
score, the most popular type of adaptive score normalization, especially when
one or more recognition algorithms fail or when there are impostor scores.
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