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Abstract—Blur due to motion and atmospheric turbulence is
a variable that impacts the accuracy of computer vision-based
face recognition techniques. However, in images captured in the
wild, such variables can hardly be avoided, requiring methods
to account for these degradations in order to achieve accurate
results in real time. One such method is to estimate the blur and
then use deconvolution to negate or, at the very least, mitigate the
effects of blur. In this paper, we describe a method for estimating
motion blur and a method for estimating atmospheric blur.
Unlike previous blur estimation methods, both methods are fully
automated, allowing integration into a real-time facial recognition
pipeline. We show experimentally, on datasets processed to
include synthetic and real motion and atmospheric blur, that
these techniques improve recognition more than prior work.
At multiple levels of blur, our results demonstrate significant
improvement over related works and our baseline on data derived
from both the FERET (fairly constrained data) and Labeled
Faces in the Wild (fairly unconstrained data) sets.

I. INTRODUCTION

Facial recognition technology allows for a convenient and
non-invasive way to recognize an unknown subject. However,
the task of unconstrained face recognition still remains a
challenging problem because of its fundamental difficulties
concerning various factors in the real world such as pose
(in-plane and out-plane rotation), illumination changes, facial
expressions, and atmospheric and motion blur. The first three
issues are primarily properties of the face in three-dimensions,
whereas blur is a variable at the image level. That is to say that
until an image is captured, no concrete notion of blur exists
between target object and observing body. As soon as the scene
is captured, an artifact representing changing environmental
conditions over the course of the integration time is apparent.
One approach to solving the greater problem of unconstrained
environments involves reducing the set of gallery and probe
images so that it approximates a constrained environment face
recognition problem. This approach lends itself rather well to
the case of blurred images, since blur is an artifact at the
image level and thus can be reversed (theoretically) simply
by manipulating the image. This, then, raises the question of
how to manipulate the image such that the recorded blur is
reversed or, at the very least and far more likely, mitigated.

Many previous works on the difficulties in facial recognition
due to various factors in the real world have focused on pose
and illumination variations, but only a few have focused on the
issue of motion blur and atmospheric blur. The focus of this
paper is automatic motion and atmospheric blur estimation and

deblurring for a real-time facial recognition system. Motion
and atmospheric deblurring is a highly ill-posed problem
where the observed image g(x, y) is the convolution of the
original image f(x, y) and the unknown blur kernel d(x, y)

plus additive noise n(x, y).

g(x, y) = f(x, y)⌦ d(x, y) + n(x, y) (1)

To combat motion blur, many methods using multiple
images to perform motion blur estimation have been proposed.
They seek to utilize correlation among blurred images, based
on the observation that all blur observations come from
the same latent image [1]. However, for a real-time facial
recognition system this assumption is not satisfied since there
can be multiple faces in the image with different levels of
blur and there is no guarantee that the same face will be
found in subsequent frames. One method using a blur/noisy
pair [2] shows good estimation and deblurring results but
requires an exposure bracketing function that is not available
on most cameras, thereby limiting the application range of this
algorithm. Other current methods are focused on space-variant
motion blur estimation, nonparametric blur kernel estimation,
and blind deconvolution for motion [3], [4], [5]. However,
the computational complexity and processing time of these
algorithms does not fit into the constraints of a real-time facial
recognition system with today’s hardware.

Our motion work is based on the previous work of using a
single image to estimate the motion or atmospheric blur point
spread function (PSF) and then use a deconvolution filter such
as a Wiener filter to recover the image. These approaches are
based on the fact that some of the blur PSFs have periodic
zeros in the frequency domain that can be used to estimate
the blur length and direction [6]. Although this approach is
somewhat sensitive to noise, it does provide a reasonable
tradeoff between algorithm performance, computational com-
plexity, and processing time and is the basis for our current
motion blur estimation and compensation algorithm.

On the topic of atmospheric blur, the distortion caused by
thermal aberrations in the atmosphere, there has been extensive
research on blind deconvolution algorithms over the past 20
years [7], [8]. Blind deconvolution algorithms can be generally
categorized into two methods. The first method, which our
atmospheric work is based on, separates the atmospheric blur
PSF identification as a separate procedure from restoration and
is usually a non-iterative process. For example, [9] proposes to
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Fig. 1. An overview of the complete face recognition system described in
this paper, including atmospheric or motion deblurring.

estimate the PSF directly from the image using automatic best
step-edge detection and then use this information to compute
the atmospheric modulation transfer function (MTF) to restore
the image.

The second method combines the PSF estimation and
restoration into one process, and it is usually an iterative
process. This method formulates a parametric model for both
the atmospheric blur and image at each stage of the process
and then uses these models in the subsequent iteration of
the algorithm. An isotropic 2D Gaussian function is normally
used to model the atmospheric PSF [10], [11], [12]. However,
the quality of the restored image and the speed at which the
algorithms converge is based on the initial guess of the atmo-
spheric PSF parameters. More recently, a blind deconvolution
algorithm that is based on kurtosis minimization has been
described in [13]. Using a set choice of blur parameters, the
atmospheric blurred image is restored and then a statistical
criterion, the minimum kurtosis, is used as a quality metric to
select the best restored image.

It is from this perspective of blur reversal or mitigation that
the current study treats the effect of motion and atmospheric
blur on the face recognition problem. Figure 1 shows the
proposed deblurring and facial recognition system framework
consisting of 4 blocks: face detection, atmospheric and motion
blur PSF estimation, a deblurring block implying deconvolu-
tion using the estimated blur PSF and a Wiener filter, and a
V1 based recognition core [14].

We organize the rest of the paper as follows: Sections II
and III outline the motion and atmospheric blur estimation
techniques used in both the preprocessing and recognition
phases of testing. Section IV provides further details on the
structure and implementation of our recognition pipeline, and
presents results from our experiments on both synthetic and
real data. We conclude in Section V.

II. IMAGE AND MOTION BLUR MODEL

Motion blur is caused by the relative motion between the
camera and the scene during the integration time of the image.
The lost spatial frequencies in motion blurred images can be
recovered by image deconvolution, provided that the motion
is at least locally shift-invariant. The first step to recover an
image degraded by motion blur is to determine the original
motion function or point spread function (PSF) precisely as
possible. More accurately, given a motion blurred image and
assuming a linear motion blur, we need to estimate the angle of
the motion blur ⇥ and the blur length L. We consider a linear
motion model not because it is the most accurate model of

motion (it isn’t), but because it is straightforward to work with
algorithmically, and yields excellent results when deblurring
for face recognition. According to Equation 1, in order to
recover the original image, f(x, y), we need to estimate the
motion blur PSF, d(x, y), and convolve the degraded image,
g(x, y), with the inverse of the PSF, in addition to estimating
the additive noise n(x, y). Since the noise function is usually
stochastic, we can just estimate the magnitude or the signal-to-
noise ratio (SNR). Assuming a linear motion blur, the PSF can
be formulated using the motion blur angle ⇥ and the motion
blur length L using the following equation:

d(x, y) =

(
1
L

if 0  |x|  L cos ⇥; y = L sin⇥

0, otherwise
(2)

The frequency response of d(x, y) is a sinc function and is
given by the following equation.

D(w
x

, w
y

) = sinc (⇡L(w
x

cos⇥ + w
y

sin⇥)) (3)

As shown in Equation 3, the motion blur angle ⇥ and the
motion blur length L are also preserved in the frequency
domain representation of the motion blur PSF. The sinc

function has periodic zeros according to the blur length L
and at an orientation that corresponds to the blur angle ⇥.
Therefore, we can identify blur parameters by detecting the
period and direction of the periodic zeros in the sinc function.

A. Motion Blur Parameter Identification using the Cepstrum
of the Image

A method for identifying these periodic zeros in the sinc

function, and thus the motion blur parameters, is to use
the two-dimensional Cepstrum of the blurred image [6]. The
Cepstrum of the blurred image g(x, y) is given by the formula:

C(g(x, y)) = F�1
(log |F (g(x, y))|) (4)

where F is the Fourier transform.
An interesting aspect of the Cepstrum is that it adheres to

the property of additivity under convolution. If we disregard
the additive noise, then:

C(g(x, y)) = C(f(x, y)) + C(d(x, y)) (5)

Biemond et al. show in [15] that C(d(x, y)) =

F�1
(logkD(x, y)k), where D(x, y) is the Fourier transform

of d(x, y), has two large negative spikes at a distance L from
the origin which can be used to estimate the motion blur
length. However, the motion blur direction must be estimated
first.

B. Motion Blur Direction Identification
The identification of blur direction is based on the fact that

the Cepstrum of a non-blurred original image is isotropic,
and the Cepstrum of a motion blurred image is anisotropic
as shown in Figure 2. It can be seen from Figure 2 that the
anisotropy in the Cepstrum is perpendicular to the motion blur
angle (in this example, 45

�). The Hough transform can be used
to detect the orientation of the anisotrophy in the Cepstrum.



(a) Original Image (b) Cepstrum of original im-
age

(c) Motion blur at 45� (d) Cepstrum of motion
blurred image reflecting
blur angle.

Fig. 2. Images and corresponding Cepstrums.

To reduce the computational time of the Hough transform,
the Cepstrum is converted to a binary image by thresholding
using the most maximum value of the Cepstrum divided by
128, which can be accomplished using a shift operation.

The Hough transform returns an accumulator array in which
the maximum value should correspond to the blur direction.
However, our experiments have shown that when the maxi-
mum value does not exactly correspond to the blur direction,
the 2

nd � 5

th entry does correspond to the blur direction.
Therefore, we return up to 5 angle estimates to increase the
accuracy of the system. The inaccurate angle estimates are
eliminated during the image restoration phase of the algorithm.

C. Motion Blur Length Identification

Once the candidate motion directions have been determined,
the Cepstrum is rotated in the direction opposite to the motion
direction. As noted in Section II-A, the Cepstrum of a blurred
image will contain two significant negative peaks at a distance
L from the origin.

To reduce the noise in the 2D Cepstrum and provide a more
accurate estimation we are collapsing the 2D Cepstrum into
a 1D signal. The 1D Cepstrum also contains two pronounced
negative peaks corresponding to the motion blur length. Most
motion blur length estimations that use the Cepstrum for the
length estimation either use the location of the largest negative
peak, global minimum method, [6], [16] or the position of
the first negative value or zero, first crossing method, as the
length estimate [17], [18]. However, we have experimentally
determined that both estimates can be used to provide more
accurate motion blur length estimations. Our research has
shown that for blur lengths less than 12 pixels the first negative
value or zero for the length estimate is more accurate, while,
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Fig. 3. Results of our Length Estimation Experiments on Motion Blurred
Images. Curves express estimation error.

for motion blur lengths greater than 12 pixels the location
of the largest negative peak is more accurate as the motion
blur length estimation. An extensive review of the motion
blur compensation literature did not produce any papers that
documented this fact. Figure 3 shows the results of our length
estimation experiments on motion blurred images.

For every motion blur length, ⇥ was iterated from 0

� to
180

� and 5 length estimates were generated using both the first
crossing and global minimum methods for each ⇥ value. The
length estimate that was the closest to the real blur length was
used as the estimation error. For example, if the blur length
was 5 and the estimated blur length was 4 or 6 then the error
is 1. From Figure 3 it can be seen that using both techniques
to estimate the motion blur length significantly reduces the
error in estimating the motion blur length. The use of both
estimates leads to up to 10 total estimates: 5 angle estimates
with 2 length estimates per angle estimate. However, all but
2 complete estimates consisting of 1 angle and 1 motion blur
length estimate will be eliminated during the image restoration
phase of the algorithm.

D. Image Restoration

A Hanning window is applied to the image before restora-
tion to reduce the frequency effects or ringing in the output
image due to discontinuities at the edge of the image. A
Wiener Filter can be used to perform the image deconvolution
once the motion blur angle and length have been estimated.
Equation 6 below shows the Wiener Filter formula.

R
Wiener

(u, v) =

H⇤
(u, v)

|H(u, v)|2 +

1
SNR

(6)

An alternative to the Wiener filter is the Constrained Least
Squares (CLS) filter as presented in [19]. The CLS filter
replaces the power Cepstrum ratio or 1

SNR

parameter with
a function that varies with frequency. The CLS filter helps
eliminate some of the oscillations or “waves” in the output



Fig. 4. The effects of motion blur (top row) and deblurring using the first
crossing (middle row) and global min (bottom row) techniques on blurs of 10
pixels (left column), 15 pixels (middle column), and 20 pixels (right column)

image by including a smoothing criterion. The CLS filter
formula is shown below in Equation 7:

R
CLS

(u, v) =

H⇤
(u, v)

|H(u, v)|2 + �|P (u, v)|2 (7)

where � controls how much low-pass filtering occurs and
P (u, v) is the Fourier transform of the smoothness criterion
function.

Currently, we are using Laplacian cross mask as our smooth-
ness criterion function. The Laplacian cross mask corresponds
to a high pass filter; however, since it appears in the denomi-
nator of the Wiener filter formula, it acts as a low pass filter.
We make use of the SNR-estimation technique presented in
[20]. Finally, to eliminate the processing of up to 10 recovered
images, we use a computationally effective image metric [21]
to select the two “best” images or the images deblurred with
the PSF that was closest to the PSF of the blurring function.
The two “best” images are then sent to the facial recognition
core. The final recognition result comes from the image that
produced the highest rank 1 score. Figure 4 shows the effect of
motion blur and the results of deblurring using the presented
methods.

III. ATMOSPHERIC BLUR MODEL AND RESTORATION

Atmospheric disturbances that can be attributed to the
scattering and absorption of particles in the atmosphere and
optical turbulence can also have significant impact on facial
recognition performance. Our approach for atmospheric blur
compensation is a linear systems approach in which a prede-
termined atmospheric modulation transfer function (AMTF) is
deconvolved with the original image. The AMTF that we are
using to model the atmospheric blur is based on a PSF that

Fig. 5. The effect of moderately severe atmospheric blur (left) and deblurring
using our technique (right)

is within the Levy “stable” density family [22] whose Fourier
transform is defined by:

F{h}(u, v) = e��(u2+v

2)⌘
;

(u, v) 2 R2,
� > 0,

0 < ⌘  1

(8)

where u and v are the frequency variables, � controls the
severity of the blur, and the value of ⌘ is an experimentally
determined constant [22]. As the value of � increases, the blur
becomes stronger and when � = 0 there is no blur. We are using
multiple perturbations of the atmospheric parameters. For each
blurred input image we are generating 10 deblurred estimates
by perturbing the � parameter. The images are recovered using
the Wiener filter in Equation 6 and the estimated SNR. Finally,
to eliminate the processing of all perturbed images, we use
the same image metric described in Section II-D to select the
“best” image or the image deblurred with the � that was closest
to the � of the blurring function. A single image statistic,
minimum kurtosis, as presented in [13], was also evaluated,
however our image metric proved to be a more robust and
accurate estimator of the � parameter. Finally, in [13], the
range of atmospheric parameters is set by the user and the
range is usually computed by trial and error. The advantage
of our algorithm is that the range of � is recomputed based
on the � of the “best” image, thereby providing an adaptive
atmospheric deblurring filter. Figure 5 shows an example of
deblurring on an atmospherically blurred image.

IV. RESULTS AND SIGNIFICANCE

A. Facial Recognition
The deblurring methodology described above can be used

as a pre-processing module for any facial recognition system.
Here we briefly describe the facial recognition approach used
to evaluate the impact of blur and our subsequent application
of the deblurring algorithms. All images, both probe and
gallery, were first geometrically normalized and the faces
extracted from the surrounding images using the preprocessing
module from the CSU Face Identification Evaluation Toolkit
version 5.0 [23]. This resulted in face chips of uniform
sizes with uniform orientation to reduce the variation between
gallery and probe images due to factors other than those we
were testing. For our synthetic data experiments, to blur the



probe images, each face chip was convolved with a filter
synthesizing the effects of motion or atmospherics (depending
on the test). This final image then became the input to the
deblurring phase. The methods proposed in this study were
implemented in a high-level prototyping language and run
prior to decomposing each image into features to train or test
a Support Vector Machine (SVM) classifier. Given a set of
blur parameters and an associated model, a deconvolution filter
was generated as described in Sections II and III. Each blurred
image was then convolved with the filter (a multiplication in
frequency space) resulting in a deblurred image. This final
image was used as input to the recognition core.

The recognition technique utilized is an augmented form of
the technique published by Pinto et al. in [14]. Each gallery
image is first filtered by an array of 96 Gabor filters, generating
a large array of feature vectors. PCA is used to reduce the
dimensionality of these feature vectors prior to using them to
train a multiclass SVM. Due to the nature of this method of
classification, several gallery images were used for each class
so as to increase the accuracy of the SVM’s convergence. In
the model of Pinto et al., the probe images are treated the exact
same way, with each resulting feature vector classified by the
trained SVM. It is in this stage or prior where the authors
deblur the probe image before feeding it into the recognition
pipeline. This reduces our problem to the same problem as in
[14]. This algorithm was chosen for its relative simplicity and
excellent baseline performance on popular data sets.

B. Experiments with Synthetic Blur
Using blurred images as probes in a facial recognition

situation presents a serious issue that is known to have adverse
effects. Several recent studies [24], [25] in facial recognition
have treated this issue from various perspectives. Our per-
spective involves estimating the degree to which the blur has
affected the original image and attempting to reverse these
effects, as detailed in Sections II and III. These methods are
completely automated, requiring no additional human inter-
action, and demonstrate significant improvement over related
works and our baseline, which attempts to match blurred faces
against a clean gallery.

To test these deblurring methods, we employed a com-
plete experiment-oriented facial recognition pipeline (shown
in Figure 1). The tests were set up such that sets of clean
gallery images from public datasets were used to train multi-
class SVMs. For each data set, a set of images was chosen
to be unique from all gallery images. These images were
synthetically blurred as described below. These processed
images were then used as probes to test the trained classifier
and generate results indicative of the performance of our
deblurring methods.

To determine recognition metrics, subsets of two public
datasets, FERET [26] and Labeled Faces in the Wild (LFW)
[27], were employed. Each was prepared in such a way as
to provide the maximum comparability to both the original
intent of the dataset as well as with each other. Both datasets
were geometrically normalized, but otherwise left unperturbed,

TABLE I
RANK 1 RECOGNITION RESULTS FOR BASELINE AND MOTION DEBLURRED

FERET240.

BLUR None 10px 15px 20px
Baseline blurred 97.50 75.00 39.58 16.67
Deblurred – 92.89 93.75 86.67

prior to blurring the probes. For motion blur, recognition was
tested at blur lengths of 10, 15, and 20 pixels and at integral
angles uniformly distributed in the range 0 < ⇥  ⇡. For
atmospheric blur, recognition was tested for � = 0.09.

The FERET subset chosen (dubbed “FERET240”) was
determined by choosing the subjects for whom the full set
contained four or more images (giving us a sufficient amount
of training data for the gallery). Of these, the first three,
determined by an alphabetic sort, were utilized as gallery; the
fourth in the listing was used as probe. This subset contained
240 subjects and 960 face chips.

In order to use LFW, a protocol identical to that used for
FERET was chosen. This varies from the protocol defined in
[27] in that ours is tailored to the recognition problem, whereas
the original is tailored to the verification problem. Subjects
were chosen based on whether or not the original dataset
contained four or more images, as with FERET. The first
three, given by an alphabetic sort, were chosen as gallery; the
fourth was chosen as probe. This subset (dubbed “LFW610”)
contained 610 subjects and 2440 face chips.

C. Controlled Motion Blur

For each dataset, a blurred version of each probe was
created at lengths of 10, 15, and 20 pixels, representing the
range wherein motion blur severely crippled recognition on
otherwise unprocessed probes. A suite of experiments utilizing
five different sets of parameters was run on each dataset and
blur level. For comparison, a baseline test was conducted on
each blur length using the method of Pinto et al. [14] without
performing any blur correction.

As the FERET data set is a fairly well-behaved data
set (consisting of frontal images of unoccluded faces with
consistent lighting), results were also fairly well-behaved. The
rank 1 results for each experiment are summarized in Table I.
As expected, recognition rates dropped as blur increased, due
to the increased possibility for error in estimating the blur, with
an error in recognition of 4.61%, 3.85%, and 11.12% for blurs
of length 10, 15, and 20 pixels, respectively. However, deblur-
ring the probes before attempting recognition demonstrated
a marked increase in the percentage of probes recognized,
at 23.85% (10 pixels), 136.86% (15 pixels), and 419.92%
(20 pixels). The comparative cumulative match curves (rep-
resenting percentage improvement of the deblurring over the
baseline for increasing percentages of the total gallery) are
shown in in Figure 6.

Labeled Faces in the Wild (LFW), on the other hand, is
an unconstrained dataset by its very nature, so the results
of deblurring were considerably lower. In [14], Pinto et al.
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TABLE II
RANK 1 RECOGNITION RESULTS FOR BASELINE AND MOTION DEBLURRED

LFW610.

BLUR None 10px 15px 20px
Baseline blurred 41.64 19.34 10.33 5.08
Deblurred – 33.11 24.26 16.89

treat the set from the perspective of a 1-to-1 face verification
problem, using a protocol similar to that laid out in [27]. This
protocol is designed to test the problem of whether or not two
faces presented are of the same person. Using this technique,
they demonstrate a 79.35% rate of success. This result is quite
good, considering that chance for the verification protocol is
50%.

However, this paper approaches the dataset from the per-
spective of a recognition problem, testing the problem of
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TABLE III
RANK 1 RECOGNITION RESULTS ON ATMOSPHERIC DEBLURRED SETS.

� = 0.09 IN EQUATION 8, REPRESENTING MODERATELY SEVERE BLUR.

No Blur Blurred Deblurred
FERET240 97.50 37.08 90.68
LFW610 41.64 9.34 37.54

classifying a picture as having been taken of a particular
subject (out of a gallery of several). Thus, the problem is
considerably harder; chance for recognition is 1 in N , where
N is the number of subjects in the gallery. As LFW is
considered to be one of the hardest set of faces for recognition,
it is expected that recognition rates will be considerably
lower than those obtained on other, more constrained, datasets.
Thus, the numbers presented may appear low compared to
the FERET240 results (fulfilling expectations), but are, in
fact, demonstrative of a marked performance increase due to
deblurring.

Table II summarizes the results obtained from attempting
a recognition-style experimental protocol on LFW610. As
described above, recognition on a clean copy of the dataset
is 41.64%, which is quite a bit lower than the 97.50%
obtained on FERET240. However, as the effect of blur further
reduces this rank 1 recognition rate, it can easily be seen that
deblurring provides a considerable increase in recognition rates
at 71.2% for a blur of 10 pixels, 134.85% at 15 pixels, and
232.48% at 20 pixels. Due to the difficulty of the dataset,
it is not surprising that the recognition error due to blur and
subsequent estimation error is 20.49% (10 pixels), 41.74% (20
pixels), and 59.44% (20 pixels), which is considerably greater
than the respective numbers for FERET240. The comparative
cumulative match curves are shown in Figure 7.

D. Controlled Atmospheric Blur

For each dataset, the atmospheric blur correction technique
was tested with moderately severe synthetic atmospheric blur
(� = 0.09 in Equation 8). Two sets of tests were performed:
one on synthetically blurred probes to establish a baseline and
one on deblurred versions of these probes. The rank 1 results
are summarized, along with the results of recognition on clean
probes, in Table III.

On FERET240, the atmospheric deblurring technique pre-
sented demonstrated a relatively minimal recognition error due
to blur at a mere 7%, while exhibiting a drastic 144.55%
increase in recognition rate over that of the blurred probes.
The results for LFW610 were also very strong with a 301.93%
increase in recognition rate over the blurred probes, while only
suffering a 10.92% error due to the blur. Figure 8 presents
comparative cumulative match curves for the atmospheric blur
experiments for each of the two datasets.

E. Experiments with Real Blur

In order to further validate our approach, we processed
several videos of subjects in motion in an outdoor setting
at 100M. In total, three different videos were processed,
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Fig. 9. Examples of original imagery from outdoor video (top row) and the
resulting deblurred imagery for comparison (bottom row)

containing 85 frames, 125 frames, and 82 frames respectively.
The gallery consisted of a small watchlist of 7 subjects (typical
of small-scale surveillance applications), including the subjects
in each video. Each frame was processed with exactly the same
procedure as the above experiments. Only motion deblurring
was applied to each frame. Examples of the original source
imagery and our deblurred imagery are given in Figure 9.
The rank 1 recognition results are given in Table IV. From
this table, we see a dramatic performance improvement on
real world data in all three cases. Thus, we conclude that
our proposed deblurring approach is suitable for live face
recognition applications.

TABLE IV
RANK 1 RECOGNITION RESULTS FOR FRAMES FROM VIDEOS FOR THREE

DIFFERENT SUBJECTS IN MOTION. THE GALLERY WAS A SIMULATED
SURVEILLANCE WATCHLIST OF 7 SUBJECTS.

Subject 1 Subject 2 Subject 3
Blur 0.0 51.20 4.88
Deblurred 70.59 98.40 70.73

V. CONCLUSION

In this paper, we have presented a set of techniques for
dealing with two types of blur evident in the real world
insofar as their estimation and correction in the context of
a facial recognition pipeline. We have presented a technique
for estimating motion blur and a technique for estimating
atmospheric blur and tested both on synthetically blurred data
generated from two publicly-available datasets, one fairly well-
behaved (FERET) and one unconstrained dataset (LFW). We
also processed a series of videos containing real motion blur
in a live outdoor setting. We have demonstrated a significant
increase in recognition rates as a direct result of our deblurring
techniques over the baseline recognition on the source images.
Future work includes further study into methods of detecting
whether or not blur is present, as well as determining which of
several deblurring methods is appropriate for a given image.
In addition, this study provides opportunity for using similar
deblurring techniques with other recognition core implemen-
tations.
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