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Abstract

For identity related problems, descriptive attributes can
take the form of any information that helps represent an in-
dividual, including age data, describable visual attributes,
and contextual data. With a rich set of descriptive at-
tributes, it is possible to enhance the base matching accu-
racy of a traditional face identification system through intel-
ligent score weighting. If we can factor any attribute differ-
ences between people into our match score calculation, we
can deemphasize incorrect results, and ideally lift the cor-
rect matching record to a higher rank position. Naturally,
the presence of all descriptive attributes during a match
instance cannot be expected, especially when considering
non-biometric context. Thus, in this paper, we examine
the application of Bayesian Attribute Networks to combine
descriptive attributes and produce accurate weighting fac-
tors to apply to match scores from face recognition systems
based on incomplete observations made at match time. We
also examine the pragmatic concerns of attribute network
creation, and introduce a Noisy-OR formulation for stream-
lined truth value assignment and more accurate weighting.
Experimental results show that incorporating descriptive
attributes into the matching process significantly enhances
face identification over the baseline by up to 32.8%.

1. Introduction

The growing demand for highly accurate surveillance,
intelligence, and forensics systems has propelled the uncon-
strained face identification problem to the forefront of bio-
metric research. Over the past decade, excellent progress
has been made towards the constrained and unconstrained
face verification problems, but only small incremental ad-
vances have been achieved for unconstrained identification.
Verification is a fundamentally easier problem than identi-
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Figure 1. An overview of the attribute fusion approach. By con-
structing a Bayesian attribute network of descriptive attributes dur-
ing enrollment, it is possible to incorporate additional information
into the matching process, while allowing for some unknown at-
tributes. Attributes in blue can be automatically extracted from a
face image, while attributes in red reflect non-biometric context.

fication, as it only considers discrete pairs of samples for
matching, with a claimed identity choosing a comparison
identity that is known to the matching system. Identification
is made more difficult by the need to identify an unknown
identity out of the entire set of (often numerous) known
identities. Compounding this structural consideration is the
overall environment of the unconstrained scenario, where
any number of effects (pose, illumination, expression, sen-
sor noise, focus, weather, etc.) can impact accuracy.

In the presence of such a challenge, it is advantageous
to exploit other information beyond the features used by a
face recognition algorithm to improve matching accuracy.
For identity related problems, descriptive attributes can take
the form of any information that helps represent an indi-
vidual, including age data [6], describable visual attributes
[12], and contextual data. All, when combined, provide a
stronger or weaker evidentiary claim for identity. Contex-
tual data is of particular interest, as it brings information to
the matching process that is outside of the biometric do-
main, such as locality, professional descriptors, personal



descriptors and action assignment. In a Bayesian frame-
work [4], attribute networks of descriptive attributes can be
built with appropriate probability assignments for each at-
tribute, leading to a probabilistic “weight” when the net-
work is solved for a set of observations.

For example, consider a case where the enrollment
record for a rank-1 match indicates that the person asso-
ciated with the record in Fig. 1 is a male Caucasian with
brown hair, lives in South Bend, and works as a univer-
sity professor, but the attributes of the probe subject indi-
cate Asian ethnicity, black hair and bushy eyebrows, and
residence in Boston. In an attribute network context, the
mis-matched attributes produce a low probability solution,
which, when applied as a weighting factor to the rank-1
match score produced by the face recognition algorithm,
deemphasizes the incorrect result, and ideally lifts the cor-
rect matching record to a higher rank position.

While we most often think of soft biometrics as descrip-
tive attributes, contextual attributes can actually be more
useful in a fusion framework. In many situations, they are
also easier to obtain. Imagine a commercial banking appli-
cation designed to detect fraud, where a user’s face is cap-
tured by the camera at the teller’s station or in the ATM, and
branch locality information is recorded for each transaction.
If a particular user banks at a single branch 95% of the time,
and in a defined geographic region 100% of the time, then
if their account is accessed in a different geographic region
and the recorded face biometric does not match their enroll-
ment record, it is likely that an act of fraud is being per-
petrated. No added effort is required on the bank’s part to
record locality information, which is simply being exploited
in a new way to add benefit.

Our contributions in this work seek to extend prior work
in soft biometric fusion. Here we introduce a Bayesian for-
mulation that incorporates information beyond soft biomet-
rics, including non-biometric contextual data. We also in-
troduce a Noisy-OR formulation for streamlined truth value
assignment and more accurate weighting. Finally, we exam-
ine the accuracy of Bayesian weighting in the presence of
unknown attributes. The experiments presented in this pa-
per incorporate the best robust age estimation and describ-
able visual attribute approaches that have been reported in
the literature to date. We show that by incorporating addi-
tional information into the matching process, we can signif-
icantly enhance the accuracy of a leading face recognition
algorithm on an identification problem.

We organize the rest of this paper as follows. In Section
2, we review the relevant prior work related to decision-
level fusion for biometric systems, soft biometrics, describ-
able visual attributes, and Bayesian networks for intelli-
gence decisions. In Secs. 3 & 4, we describe our Bayesian
approach to combining descriptive attributes, including a
Noisy-OR formulation to improve usability and accuracy.

To demonstrate the feasibility of our approach, we present a
series of experiments for the MBGC data set in Sec. 5. We
conclude and sketch some ideas for future work in Sec. 6.

2. Related Work

There is significant interest in several problems related
to this work, including decision-level fusion for biometric
systems, soft biometrics, describable visual attributes, and
Bayesian networks for intelligence decisions. As of this
writing, no proposed solution for the above problems, ei-
ther individually or in combination, fuses biometric data,
contextual data and traditional recognition score data in a
pragmatic fashion. Thus, our contribution here is the logi-
cal next step of combining all of these elements.

Decision-level fusion is defined as data processing by in-
dependent classifiers, followed by the fusion of decisions
(based upon the calculated results) of each classifier. This
idea can be thought of as n different inputs to n differ-
ent classifiers, producing n decisions that are combined to-
gether to produce a final decision that the system will act
upon. Several strategies exist for decision-level fusion, in-
cluding the very basic AND and OR rules, majority voting
[14], behavior knowledge space [13], and weighted voting
based on the Dempster-Shafer theory of evidence [33]. Sim-
ilarly, rank level fusion [29] can help decide a more accu-
rate rank configuration between classifiers. However, the
strategies for combining traditional recognition score data
are not always appropriate for combining descriptive at-
tributes, which are typically weaker (even when combined)
as a holistic representation of an identity than a biometric
recognition algorithm. Moreover, when we combine obser-
vations for attributes that exist over large populations, we’d
like to do so in a probabilistic manner, leading us to the
Bayesian formulation.

For our attributes, we make the distinction between tra-
ditional soft biometrics and descriptive attributes. Soft bio-
metrics, defined by Jain et al. in [11], are “characteristics
that provide some information about the individual, but lack
the distinctiveness and permanence to sufficiently differen-
tiate any two individuals.” Examples of soft biometrics are
height, weight, ethnicity, gender, etc. Many different ap-
proaches to identifying these types of traits have been pro-
posed in the literature, such as LDA [16], full-face SVMs
using brightness normalized pixel values [ 9], Adaboost us-
ing Haar-like features [27], and Adaboost using pixel com-
parison features [2]. The downside to much of the work in
soft biometrics has been an emphasis on algorithms for spe-
cific soft biometric traits, as opposed to a general classifica-
tion framework. This is where describable visual attributes
come into play.

Describable visual attributes are labels given to an im-
age to describe any aspect of its appearance. The approach
suggested by Kumar et al. in [12] has several important



advantages over previous work in soft biometrics, includ-
ing: a general framework to represent objects in the im-
ages beyond human features, representation at various lev-
els of specificity, the ability to generalize based on a com-
mon feature set, and efficiency at a feature and learning
level. Describable visual attributes have been shown to be
quite useful for image based search and face verification.
Other recent work by IBM in this area has explored hier-
archical ranking of attributes computed from texture, shape
and color features [7], as well as cross-attribute correlation
modeling [28]. In this work, we make use of the robust age
estimation of Chen et al. [6], which is explained in detail in
Sec. 5.1., as well as the general describable visual attribute
methodology of Kumar et al., explained in Sec. 5.2.

Beyond describable visual attributes, we are also inter-
ested in contextual attributes. A Bayesian network ap-
proach is a natural fit for combining contextual attributes
— especially when probabilistic behaviors are of interest,
and knowledge of the world is incomplete. The use of
Bayesian networks for traditional intelligence and security
purposes is well established, with current research focus-
ing on knowledge representation and interaction. Wright et
al. [32] introduced techniques to encode military domain
and doctrinal expertise in reusable knowledge chunks using
Bayesian networks, leading to anomaly detection for mili-
tary force protection. In a similar approach, Laskey et al.
[15] explored Bayesian networks for access pattern analy-
sis, with the goal of detecting abnormal (and hence possibly
illegal) activity related to document control.

Finally, we note that our work is not the first to combine
a Bayesian framework and biometrics. Early work [3] [31]
sought to apply Bayesian classifiers for decision fusion to
choose amongst some set of match scores in a multibiomet-
ric context, but did not consider soft biometrics or contex-
tual attributes. The well known work of Jain et al. [1 1] pop-
ularized the use of soft biometrics as a complement to tra-
ditional biometric recognition through a Bayesian weight-
ing process. While that work established the feasibility of
soft biometric fusion, it did not present the makings of an
effective and scalable identification system. Specifically,
a framework for only soft biometrics is provided, with no
clear strategy for handling unknown variables and variable
probability assignments that grow exponentially. In this
present work, we seek to improve upon the approaches of
these first attempts at intelligent Bayesian weighting for
recognition systems.

3. Bayesian Weighting Approach

Bayesian networks [4] offer several advantages for de-
scriptive attribute oriented fusion, including a convenient
graph based representation (Fig. 2) that expresses relation-
ships, as well as a powerful probabilistic framework for pro-
ducing weighting factors that can be applied to a conven-
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Figure 2. Example Bayesian attribute network in a typical and
Noisy-OR formulation for the example of Fig. 1. The Noisy-OR
formulation requires exponentially fewer truth relationships.

tional biometric recognition system. In essence, a Bayesian
network is a directed acyclic graph (DAG), where each ver-
tex possesses a probability density function or (more com-
monly) a conditional probability table (CPT; shown as a
truth table for each vertex in Fig. 2) that expresses the ver-
tex’s dependence upon its parents. The probabilities in the
table can be derived from collections of statistical sources.
For example, Vertex 3’s CPT in Fig. 2 is derived from the
statistical distribution of gender ("50%), and the error of that
particular attribute classifier. The entire network represents
the joint probability distribution over all of the variables.
More formally, let G = (V, E) be a DAG where V is the
set of vertices and F is the set of edges. A set of random
variables x is a Bayesian network with respect to G if its
joint probability distribution function can be expressed as
a product over all vertices in the graph conditioned on the
variables corresponding to the parents of a particular vertex:

N
p(x) = _Hp(svilpai) (1)

where pa, is the set of parents and x = {z1,...,2n}.

For our particular problem, we need to combine some
set of observed attributes, while accounting for possibly un-
observed attributes. This can be done using a conditional
probability formula that takes into consideration the values
of a CPT at each vertex. Let x;, be a set of variables rep-
resenting descriptive attributes observed from a probe that
exist in a Bayesian network, and x, be a set of variables
representing unobserved descriptive attributes that exist in
the same network. To compute the probability that a probe
is user U given all xy, are true, the following formula can be
solved:

pxp =T, U=T)
qu,Z/{G{T,F} p(xx =T, %y, U)

pU[xk) = (@)



where T' & F' denote truth assignments.

Extending this to our application, assuming the CPTs of
an attribute network are an accurate reflection of the inter-
action between attributes for an individual user, the prob-
ability p(U|x}) becomes a useful quantification of confi-
dence that can be directly factored into the biometric match-
ing process. For an identification problem, consider a set
of match scores {si,s2,...,8,} produced by a recogni-
tion algorithm for a single probe matching against a gallery
of n enrollment entries. Assume these scores are normal-
ized to some positive range, where higher scores indicate
stronger similarity. Also assume that each enrollment entry
also has a corresponding attribute network capturing indi-
vidual attributes and conditional probabilities. A probabil-
ity p(U;|xx) can then be computed for each gallery entry
based on its attribute network and the set of descriptive at-
tributes observed from a probe. If we assign each p(U;|xy)
to a weighting factor w;, we can adjust all of the scores us-
ing a multiplicative weighting:

{(s1 X wy), (82 X wa),...,(8y X wy)} 3)

This approach penalizes gallery entries with many mis-
matching attributes, while preserving the scores associated
with many matching attributes.

4. Noisy-OR Approximation

For many applications, the use of a CPT at each vertex in
the attribute network is a convenient representation of vari-
able interaction. However, there are two primary reasons
why this representation in its usual formulation is problem-
atic for descriptive attributes. First, for even modestly sized
networks, it is not practical to assign all of the truth rela-
tionships contained in the CPT by hand [10]. For any ver-
tex, the number of truth relationships grows exponentially
as a function of the number of its parent vertices. Consid-
ering the example in Fig. 2, if Vertex 6 has five parents,
then the number of truth relationships that must be estab-
lished is 2° — a daunting task for an operator of the sys-
tem, and most likely infeasible given limited sampling or
incomplete knowledge of the world. Second, in most cases
for descriptive attributes, a model of causal interaction be-
tween attributes is illogical [30]: possessing brown hair is
completely independent of employment as a university pro-
fessor. Decoupling attributes from one another is a more
correct strategy, and it increases the accuracy of the weights.

With these two issues in mind, we can consider an al-
ternative model for our CPTs called the Noisy-OR function
[21]. The Noisy-OR function is a compact representation
that serves as a good approximation of the full binary CPTs.
Again, let x;, be a set of variables representing descriptive
attributes observed from a probe that exist in a Bayesian net-
work, and x,, be a set of variables representing unobserved

descriptive attributes that exist in the same network. As-
sume we have n probability values p;, where p; is the prob-
ability that i/ = T conditioned on only z; € x;, = T. More
specifically, p; = pU = T|z; = T, {z; = F}]_; ;).
where z; € X or r; € X,. To compute the probability
that a probe is user I/ given all x;, are true, the following
formula can be applied:

pU) =1-[[(1=p) “
i=1

The above product of probabilities will give us an indication
of the chance that all observed attributes occur simultane-
ously as independent variables. Thus, a very low probability
actually indicates a high probability that a series of match-
ing attributes are correct for a specific person, and are not
occurring by chance. Recontextualized, we want these low
probabilities to be strong weighting factors, hence the sub-
traction from one in the formula. In the Noisy-OR formula-
tion of the network in Fig. 2, only five different truth rela-
tionships must be assigned to Vertex 6. Given the p(U|xy)
of Eq. 4, the weighting procedure for the biometric match
scores proceeds directly from the description given at the
end of Sec. 3.

5. Experimental Evaluation

To evaluate our proposed Bayesian approach to combin-
ing descriptive attributes, we examine the following sce-
nario: identification of an unknown individual from a single
face image and some amount of non-visual contextual infor-
mation. From the face images, we estimate the age of the
person, and then extract a set of other descriptive facial at-
tributes to be used, along with the contextual information,
as observations for an attribute network. Using the weight-
ing approach of Secs. 3 & 4, we readjust the match scores
produced by a face recognition algorithm based on our at-
tribute observations.

All data considered here for the biometric identifica-
tion experiments is drawn from the NIST MBGC set [22].
For this work, we have chosen to use the LRPCA! face
recognition algorithm [23], which is an established bench-
mark for NIST testing and a top performer on MBGC data.
To emphasize the difficulty of large-scale face identifica-
tion, we selected 466 unique individuals from MBGC, with
one image each for enrollment and testing. Image pre-
processing for LRPCA matching took the form of auto-
matic face detection and eye localization (independent of
the alignment described below for attribute extraction) us-
ing the built-in capabilities of the LRPCA reference imple-
mentation. No ground-truth data was used for the recogni-
tion process. Match scores were generated via an all-vs-all
comparison, where every test image was used as a probe

Uhttp://www.cs.colostate.edu/facerec/algorithms/lrpca2010.php



matching across the entire gallery of 466 individuals, lead-
ing to a total of 217,156 scores for consideration. The base-
line rank-1 recognition rate for this data is 65.9%.

In the rest of this section, we provide exact details of our
age estimation and facial attribute extraction approaches,
and detail our experimental results. We show that by fus-
ing descriptive attributes with these baseline match scores
through intelligent weighting, we are able to significantly
lift the baseline recognition rates of LRPCA.

5.1. Robust Age Estimation

Determining a person’s age from the face is a difficult
task even for humans, let alone a computing device. The
difficulty arises from the many variables that affect the
outward appearance of the face which range from ethnic-
factors to genetic pre-disposition to lifestyle choices. How-
ever, it has been established in work by Albert et al. [1] that
there are general patterns of adult aging, which in combina-
tion with a general understanding of the facial regions that
exhibit aging can be used to formulate a system for auto-
matic age-estimation.

The early work of Ricanek et al. [25] laid the founda-
tion for the approach developed by Chen et al. [6], which
was used here. Features for age determination are ex-
tracted from the face using statistical modeling techniques
from detected fiducial points that describe the face (shape,
weight, sagging) and texture (most notably wrinkles, lines,
ptosis). A combination of Stacked Active Shape Models
(STASM) and Active Appearance Models (AAM) are used
for automatic landmarking of fiducial points. These models
are trained with a set of hand marked exemplars from the
MORPH [24] and PAL [18] datasets.

The age-estimation framework used requires the detec-
tion and landmarking of the face (see above) for the gen-
eration of face features. A method of feature selection is
used to determine the best feature combination and weight-
ing for accurate age-estimation via regression. The frame-
work is achieved by the extraction of face features from
a set of n aligned face images represented by X = {x; :
x; € RP}? . where D is the dimension of the face fea-
tures. The landmarked faces are used to obtain the face
features, a set of shape and texture parameters, denoted by
B = {b; : b; € RP} ,. Hereafter, an input face im-
age is then represented by the set of fitted parameters. A
method for feature selection is used such that coordinates
By = {b; : by € RY}™_,, where d < D (See Chen et al.
[6] for details on feature selection). With the new vector 8,
and corresponding age {y; } " ,, a regression is performed to
obtain the model for the future age estimation.

The age-estimator incorporated in this work was built
on a set of more than 600 adult faces from the MORPH
and PAL face databases. These two databases were used
to build the system due to their ethnic and gender diver-

sity and the availability of ground-truth age. The regression
technique used is Support Vector Regression (SVR) imple-
mented in the LIBSVM package [5]. The approach adopted
from Chen et al. [6] has demonstrated the best performance
(as measured by mean absolute error, MAE) against FG-
NET [&] of 4.04 years with the next two best performances
from Luu et al. [17] of 4.37 years and Gou et al. [9] of 4.77
years. Fig. 3 illustrates the age estimates for three images
from MBGC, and Table 2 notes the overall accuracy for the
data considered in this paper.

5.2. Facial Attribute Extraction

For facial attribute extraction, we make use of the visual
attribute approach of Kumar et al. [12]. As noted in Sec.
2, this approach is highly accurate, with published results
on tens of thousands of unique facial images. To achieve
this level of performance, a combination of low-level sim-
ple features and machine learning is used to build general-
ized classifiers on a per attribute basis from large amounts of
hand labeled exemplars. The input for such a process con-
sists of facial images warped by an affine alignment proce-
dure that makes use of detected fiducial points (eyes, nose,
mouth, etc.) that represent the general structure of the face.

From an aligned image I, a set of k low level feature
extractors f; are applied to form the feature set F(I):

F(I) ={0(1),. ... f(D)} ©)

Each feature extractor f; is composed of four different ele-
ments: pixels from a particular region of the face, a choice
of pixel value type, normalization, and aggregation (choices
for the last three are listed in Table 1). The facial regions
capture dominant physical features including the forehead,
nose, eyes, mouth, cheeks, eyebrows, and chin.

Pixel Value Type | Normalization | Aggregation
RGB None None

HSV Mean Norm. Histogram
Image Intensity Energy Norm. | Mean/Variance
Edge Magnitude

Edge Orientation

Table 1. Feature types for computing describable visual attributes
are constructed by applying a pixel conversion from column 1,
normalizing via an option from column 2, and aggregating via a
strategy from column 3.

Following pixel feature generation, attribute classifiers
C; can be built using supervised learning. In a binary Sup-
port Vector Machine approach, data labeled positive and
negative (ground-truth data was gathered using Amazon’s
Mechanical Turk service) for each attribute is used for train-
ing. The goal of the machine learning is to build a classi-
fier that generalizes by choosing a subset of the feature set



Gender: Male
Ethnicity: African
Eyebrows: Bushy

Weight: Skinny
Estimated Age: 34

Gender: Female
Ethnicity: Asian Ethnicity: European
Hair: Black Hair: Brown
Wearing Eyeglasses Not Wearing Eyeglasses
Estimated Age: 28 Estimated Age: 22

Gender: Male

Figure 3. Example age & face attributes automatically extracted
by the algorithms described in Secs. 5.1 & 5.2. The complete list
of attributes and their accuracies is provided in Table 2.

F(I). Using iterative forward feature selection, several in-
dividual classifiers on the current set of features in the out-
put set are trained and then concatenated in a region-free
combination at each iteration. The performance of each
classifier is evaluated using cross-validation, with the fea-
tures used to train the classifier with the highest accuracy
subsequently added to the output set. Features are added
until the accuracy stops improving, up to a maximum of 6
low-level features.

The binary SVMs make use of a Radial Basis Func-
tion kernel, with all functionality provided by the LIBSVM
package [5]. Each classifier utilizes between 500 and 2000
positive and negative examples from the Columbia Face
Database [12]. To set the C' and «y parameters of the SVM,
a grid search is used to find values that maximize classi-
fication accuracy. In total, we have access to 73 different
attribute classifiers. For the experiments of this paper, we
make use of nine of these. Some examples of extracted vi-
sual attributes are given in Fig. 3. Overall accuracies for the
attributes used in this paper are given in Table 2.

5.3. Results

Based on our list of visual attributes, and a list of con-
textual attributes (both are found in Table 2), we defined
attribute network enrollment records for each person in the
gallery. Networks of 5 & 6 vertices were chosen, which
contain 20 & 37 total CPT entries respectively for the typ-
ical Bayesian formulation, and 9 & 10 total entries respec-
tively for the Noisy-OR formulation. CPT entries for each
attribute were assigned in a probabilistic manner specific to
each person in the gallery. As can be seen from the drastic
reduction in table entries, there was less of a burden build-
ing CPTs for the Noisy-OR networks. In total, 10 differ-
ent combinations of the attributes from Table 2 were chosen
for each experiment (each attribute is used at least once),
with consistency between the typical and Noisy-OR formu-

lations for a direct comparison.

Visual Attrs. & Accuracy Contextual Attrs.
Age (+/- 7 years); 89.9% Lives in city X
Gender; 86.7% Works as X
Eyeglasses; 96.6% Works at X
Weight: Chubby; 87.8% Has n children
Eyebrows: Bushy; 88.2% Is the mother of X
Hair Color: Black; 92.3% Is the brother of X
Hair Color: Brown; 86.5% Frequents bank X
Ethnicity: Asian; 94.6% Owns a car
Ethnicity: African; 97.4% Attends school X
Ethnicity: European; 87.1% Graduated in X

Table 2. A listing of descriptive attributes considered for exper-
imentation. All visual attributes are computed from the original
source images, while the contextual attributes represent simulated
data for each image. Reported accuracies are computed over the
MBGTC test set used for all experiments in this paper.

Since we do not have actual context for any of the peo-
ple in the MBGC set, we created a set of simulated con-
text for each identity (simulated data is commonly used for
the evaluation of Bayesian frameworks [11, 32, 15]). All
visual attributes (age, gender, ethnicity, weight, hair color,
etc.), however, are automatically extracted from the source
images, and are not simulated in any way. During match-
ing, observations from the probe image are matched to each
stored attribute network for each gallery entry, producing a
unique weighting factor when each network is solved. This
weighting factor is then applied to the original match score
from LRPCA for the corresponding gallery entry. The set
of observations from the probe is left incomplete, where one
variable in the enrollment network is always unknown.

The curves in Fig. 4 summarize our experiments over the
typical and Noisy-OR formulations of attribute networks.
The rank-n recognition rate for biometric identification is
calculated by dividing the number of correct matches by
the number of incorrect matches at a particular rank, lead-
ing to a rate R,,. Since we have 10 different trials for each
experiment, we take the mean of all recognition rates at a
particular rank, leading to a rate R,,. Mean percentage im-
provement is then calculated as:

%I, = (Weighted R,, —Original R,,)/Original R,, (6)

We also report a summary of rank-1 accuracies for all ex-
periments in Table 3.

From Fig. 4, it can be seen that a significant amount
of accuracy is gained when applying the Bayesian weight-
ing to the LRPCA match scores at every rank shown. As
expected, there is an increase in accuracy when we go from
five to six vertices in the typical formulation of the Bayesian
attribute network (blue curves), reflecting the advantage of
more information in the fusion process. Of course, with



Experiment Vertex Count | CPT Entries | R, %I,
Baseline LRPCA - - 65.9% -
Bayesian Weighting 5 20 71.7% | 8.9%
Bayesian Weighting 6 37 77.0% | 18.8%
Bayesian Noisy-OR Weighting 5 9 77.9% | 18.3%
Bayesian Noisy-OR Weighting 6 10 87.5% | 32.8%

Table 3. A summary of mean rank-1 accuracies (R1) and mean percentage improvement (Z1) for the LRPCA recognition score weighting
experiments. Baseline LRPCA accuracy at rank-1 is provided for comparison.
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Figure 4. A summary of all experiments performed for LRPCA
recognition score weighting over a gallery of 466 people us-
ing both the typical (blue) and Noisy-OR (red) formulations for
Bayesian attribute networks. Each point represents mean per-
centage improvement in recognition accuracy at a particular rank
(%Z,). Note the increase in accuracy from five to six vertices in
the Bayesian network, as well as the significant increase in accu-
racy of the Noisy-OR formulation over the typical Bayesian net-
works.

more information, we are faced with increased network
complexity. Thus, turning to the Noisy-OR formulation (red
curves) in Fig. 4, we see that we do not compromise any
accuracy for convenience — in fact, we observe quite the op-
posite. There is a significant increase in accuracy over the
typical Bayesian attribute networks, where the best case of
a 6 vertex Noisy-OR network results in a mean rank-1 accu-
racy of 87.5%. This finding is consistent with previously re-
ported results in other domains [20], where removing vari-
able dependency has been shown to produce more accu-
rate models of the data. Thus, in summary, the Noisy-OR
formulation should be used for combining descriptive at-
tributes where little to no dependency exists between them.

6. Conclusion

Descriptive attributes represent an important advance
over traditional soft biometrics, with the ability to introduce

visual characteristics and non-visual context about an indi-
vidual as discriminating features for the identification pro-
cess. The overall goal of applying descriptive attributes to
biometric identification is to increase the accuracy of a face
recognition algorithm by augmenting the algorithm’s fea-
ture set with information outside of its direct operation. To
combine these descriptive attributes, we require a method
that is more sophisticated than typical decision fusion, but
still allows us to incorporate a fused representation of the
attributes into the biometric decision process. We have con-
sidered a Bayesian network framework to do this. Although
Bayesian weighting has been previously considered in the
biometrics literature, prior work had several limitations, in-
cluding: a strict focus on just soft biometrics; an assumption
of complete knowledge of soft biometrics; and no strategy
to handle truth assignments that grow exponentially.

In this paper, we have addressed these issues. We in-
troduced a Bayesian attribute network formulation that in-
corporates descriptive attributes that are well beyond the
confines of soft biometrics, including non-biometric con-
textual data. We also introduced a Noisy-OR formulation
for streamlined truth value assignment and more accurate
weighting. Finally, we examined the accuracy of Bayesian
weighting in the presence of unknown attributes. The exper-
iments presented in this paper incorporate the best robust
age estimation and describable visual attribute approaches
reported in the literature to date, giving us a state-of-the-
art indication of our fusion approach’s potential. By using
a Noisy-OR formulation to decouple unnecessary attribute
dependence, increased accuracy can be achieved over a
baseline rank-n identification rate, while simultaneously re-
ducing the computational complexity of the network.

While we have established the groundwork for a more
intelligent Bayesian weighting approach in this work, there
are several different aspects that can be expanded upon.
Most obviously, work to enhance and expand our describ-
able visual attributes is of particular value, and this is ongo-
ing. A more fundamental issue that requires further consid-
eration, however, is related to the Bayesian weighting itself.
We made use of a multiplicative score weighting (s x w),
which produced promising results, but may not be the op-
timal strategy. Alternative strategies include applying the
weight at the recognition algorithm’s sensor or feature level.



Since our weights are, in essence, probabilities, we can also
move to more advanced statistical modeling by combining a

probabilistic normalization approach [

] with the Bayesian

approach described here, giving us a more formal sense of
probabilistic certainty.
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