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(a) our syntax-based scheme that uses variable-length partition with multiple breakmarks 
can detect many polymorphic worms, (b) we believe our semantic-based prototype is the 
first NIDS that provides semantics-aware capability and our system  is more efficient than 
what is reported by Christodorescu et al (2005), (c) our designed templates can capture 
polymorphic shellcodes with added sequences of stack and mathematic operations. 
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1 INTRODUCTION 

In recent years, computer intrusion has been on the rise. The 
popularity of the Internet and the widespread use of 
homogeneous software provide an ideal climate for 
infectious programs. The cost of viruses and worms in 2002 
was estimated to be 45 billion dollars (Reuters 2003). In 
2003, this number jumped to 55 billion dollars (Reuters 
2003). Much money has to be spent on researching 
techniques that can fend off intrusion attempts such that 
computer systems can operate effectively. A popular 

technology called the Intrusion Detection System (IDS) has 
emerged to identify and block intrusion attempts. Popular 
network IDS (NIDS) systems such as Snort (Roesch 1999) 
and Bro (Paxson 1998) utilize a signature-based approach to 
detect malicious network traffic. In these systems, static 
signatures of known attacks are used to identify attack 
packets. A major drawback of this approach is that unknown 
attacks cannot be detected – the ones, which conceivably 
will cause the most damage. 

Typically, new attacks are detected in an ad hoc fashion 
through a combination of intrusion detection systems 
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alerting potential attacks, and skilled security personnel 
manually analyzing traffic to generate attack 
characterization. Such an approach is clearly not sufficient 
since it may take hours to generate a new worm signature. 
In recent studies by Moore et al. (2004), the authors suggest 
that if the attack traffic is indicative of a worm outbreak, 
effective containment may require a reaction time of well 
under sixty seconds. Thus, new techniques that can help to 
identify threats from unseen worms or exploit packets need 
to be devised. 

In this paper, we discuss two competing approaches for 
dynamic network intrusion detection, namely the syntax-
based and semantic-based approaches. Sliding window 
schemes as presented by Kim et al. (2004), Singh et al. 
(2004), and Newsome et al. (2005) are syntax-based 
approaches that partition suspicious worm payloads to 
generate worm signatures. They are based on the premise 
that some portion of the malicious codes will inevitably be 
invariant, despite attempts to obscure their true natures for 
detection avoidance. In this paper, we describe two sliding 
window schemes. One scheme uses fixed-length partition 
while the other uses variable-length partition.  To minimize 
the number of signatures that are retained, we use similar 
threshold-based unique source/destination IPs approach 
described in Kim et al. (2004). We also use clustering 
algorithm to include similar signatures so that the false 
negative rate can be reduced. Via extensive traffic analysis, 
we demonstrate that one of the schemes called the variable 
length partition with multiple breakmarks (VPMB) scheme 
is effective in detecting several polymorphic worms. 

While the syntax-based approaches can catch many 
polymorphic worms, they will still miss certain categories 
of polymorphic worms. A worm author may craft a worm 
that changes substantially its payload on every successive 
spreading attempt, and thus evades matching by any single 
substring signature that does not also occur in innocuous 
traffic. This motivates us to propose another NIDS with 
semantics-aware capability. The prototype system that we 
have built can potentially identify threats from some 
unknown malicious network traffic. This work is an 
extension of the approach presented in Christodorescu et al. 
(2004). The semantics-aware malware detection algorithm 
of Christodorescu et al (2005) is an extremely powerful tool 
for program profiling. Based on the observation that certain 
malicious behaviors appear in all variants of a certain kind 
of malware, the authors propose using template-based 
matching to detect malware. Their approach looks for a 
match of program behaviors rather than program syntax 
matching. In this manner, polymorphic and metamorphic 
code instances can be identified right along with their static 
counterparts. However, in Christodorescu et al. (2004), the 
authors only perform experiments on a non-networked host 
with standalone virus samples as well as evaluating their 
templates against a set of benign programs. As most threats 
to end-systems now emanate from the Internet, much in the 
form of self-propagating network code, network enabled 
detection is critical. Thus, in this paper, we report on a full-
featured semantics-aware network intrusion detection 

system we have built. Our system can detect not only 
viruses, but remote exploits, including worm traffic. 
Through rigorous testing, we show that semantic detection 
is an extremely powerful tool for identifying static and 
polymorphic network exploits. Our system can perform 
more efficiently than the system presented in 
Christodorescu et al. (2004). 

The rest of the paper is organized as follows: In Section 2, 
we describe some related work and discuss how several 
pieces of work motivate this research. In Section 3, we 
describe the motivation for three sliding window schemes 
that we propose for the syntax-based approach. In Section 4, 
we present our experiments and results we obtained using 
the syntax-based approach. In Section 5, we describe the 
semantic analysis of malicious code, and discuss how binary 
exploits work. In Section 6, we present the system 
architecture of the NIDS we have built and describe in detail 
how different stages of the system work. We describe our 
experiments and the results we obtained in Section 7. 
Finally, we summarize our findings and discuss some future 
work that we intend to explore in Section 8. 

2 RELATED WORK 

Much research has been devoted to intrusion detection in 
recent years. Two enormously popular open source tools, 
Snort (Roesch 1999) and Bro (Paxson 1998), have shown 
that static signature based IDSs can be quite successful in 
the face of known attacks. Combined with automatic 
monitoring and incident response, system administrators 
have a powerful tool against network attacks. In Locasto et 
al. (2004), the authors present the case for collaborative 
intrusion detection system where intrusion detection nodes 
cooperate to determine if a network attack is taking place 
and take corrective actions if it does. Others have sought to 
use statistical approaches to detect worm outbreaks. In Gao 
et al. (2004), the authors propose a method to identify a 
worm victim by observing if the number of scans per second 
it performs exceeds a certain threshold. The numbers of 
worm victims observed in successive windows are then 
compared to the numbers predicted using a typical worm 
spread model and if they match, then a worm outbreak is 
declared. 

In Kim et al. (2004) and Singh et al. (2004), the authors 
show that byte-level analysis of packet payloads can yield 
useful signatures for worm detection.  We referred to this as 
the syntax-based sliding window approach. Such sliding 
window schemes are based on the premise that some portion 
of malicious code will inevitably be invariant despite 
attempts at obscuring its true nature for detection avoidance. 
In this approach, the payload of a packet is partitioned into 
multiple chunks when a hosen breakmark is detected and 
Rabin fingerprints of these data chunks are generated. There 
is no comparison as to whether a fixed or variable partition 
works equally well. Thus, we proposed and evaluated two 
schemes that compare between fixed and variable-length 
partitions. In addition, we also extend the work in Kim et al. 
(2004)  by using a set of breakmarks rather than a single 
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breakmark as described in Singh et al. (2004). Our multiple 
breakmark approach is similar to a recent paper Newsome et 
al. (2004). The authors in Newsome et al. (2004) advocate 
using disjoint data signatures. 

At first glance, these syntax-based approaches looked 
promising, however, in practice, they generate far too many 
signatures, with a sometimes-undesirable accuracy rate. 
With Newsome et al. (2004), we begin to see a research 
trend towards using semantics knowledge for potential 
worm detection. Here, the authors observe that invariant 
byte positions may be disjoint (a result of advanced 
polymorphic techniques), but will be present nonetheless as 
they are integral to functionality. With Christodorescu et al. 
(2004) and Yegneswaran et al. (2006), the application of 
semantics is introduced. Non-binary attacks, such as URL 
based web server exploits, are analyzed and clustered in a 
data-mining scheme in Yegneswaran et al. (2006). In this 
work, we built upon the approach described in 
Christodorescu et al. (2004). Our contributions in the 
semantic aware related approach are three fold: (a) our 
prototype is a complete NIDS that provides semantic aware 
capability, (b) our implementation is more efficient than 
what is reported in Christodorescu et al. (2004), (c) our 
designed templates can capture polymorphic shellcodes with 
added sequences of stack and mathematic operations. 

3 SYNTAX BASED SLIDING WINDOW SCHEMES 

In this section, we describe two sliding window-based 
schemes that we proposed to automatically generate worm 
signatures. As in Kim et al. (2004) and Singh et al. (2004), 
we divide the payload of a packet into multiple chunks 
either using fixed-size window or variable-length sliding 
window until a chosen breakmark is detected. Rabin 
fingerprints (Broder 1992), (Rabin 1981) of these data 
chunks are then generated. 

3.1 Fixed Partition Sliding Window Scheme (FPSW)  

   The FPSW scheme incorporates a fixed window size and a 
one-byte window sliding. The premise is simple – a series 
of fingerprints is generated as the window slides down the 
payload of a packet. Common signatures will be seen 
among different packet payloads if their contents are 
identical or similar. If the window size is small enough, 
common data portions can be isolated, despite the variation 
in the overall payloads. This is useful for the dynamic 
detection of new worm variants (e.g. W32.Blaster versus 
W32.Blaster.H). Figure 1 shows the operation of the sliding 
window using FPSW. The segments in f0, f1, and f2 will all 
be fingerprinted. 
 
 

 

 

 Figure 1   Three instances of an 8-byte sliding window, beginning 
at ‘0’ for the FPSW scheme 

  One important decision related to this approach is choosing 
a proper window size. If the window size is very small (just 
a few bytes), the false positive rates will be higher. Certain 
short sequences are bound to appear in benign traffic as well 
as in malicious code. For example, "GET /" is typically at 
the beginning of a basic web request, but could also be 
followed by malicious exploit code. A 5-byte window 
would match both to the same fingerprint. In addition, the 
amount of signatures generated is always related to the 
window size. Smaller windows will produce more 
fingerprints, thus placing a higher burden on storing and 
searching. 

3.2 Variable-length Partition with Multiple Breakmarks 
Scheme (VPMB) 

   In a polymorphic exploit, we often see a static region 
initiating a request (for example, a web based exploit may 
begin with a normal HTTP GET request), followed by a 
region of instructions that function as NOP equivalents (K2 
1998).  Thus, our VPMB scheme incorporates a one-byte 
sliding window approach until a series of breakmarks is 
reached. The breakmarks are chosen to be NOP-like 
instructions. In this method, using a look-ahead window of 
size w bytes, we search and see if all the bytes in this 
window can be found in a set of 76 breakmarks that have 
been identified. By using an adjustable look-ahead size to 
match these NOP-like instructions, we can reliably generate 
consistent fingerprints for the static regions preceding the 
NOP-like instructions.  If they are, then we will generate a 
fingerprint using all the bytes that appear before this look-
ahead window. After that, we begin a new search using a 
new window that begins 1 byte after the previously matched 
position. Figure 2 shows the operation of VPMB with three 
different window sizes: 5 bytes, 10 bytes, and 15 bytes. The 
same initial byte region is isolated in all three, producing 
one, consistent signature. 
 

 
 
 
 
 
 
Figure 2   Example of VPMB with three different window sizes     
 
An appropriate choice of look-ahead size is required to 

reduce the false positives. Similar to the FPSW's dilemma, 
choosing a smaller size will increase false positives. But 
how small is too small? Through testing (as will be shown 
later), it has been determined that a size of 20 bytes reduces 
false positives to a minimum. Tested cases with values 
greater than 20 did not result in further reductions of false 
positive but incurred additional processing cost. Insight as 
to why 20 is the "magic" look-ahead size is the following - 
the probability of finding a grouping of NOP-like 
instructions in benign traffic drops considerably as the 
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window size is increased. But in actual exploits, NOP 
regions tend to be larger than 20 bytes (so guessing an 
address back into the stack is a simpler process). Thus, 20 
represents the point at which false positives drop to a 
minimum, and true positives don't require excess processing 
time.  

4 EVALUATION OF SYNTAX BASED APPROACHES  

To compare between the two schemes described in Section 
3 and to evaluate the false positive/false negative rates of 
such a worm detection system, each of these algorithms has 
been implemented and applied to two one-hour traces that 
are extracted from a whole day's  traffic trace that was 
kindly made available by Pang et al (2004).  In this whole-
day trace, traffic was observed from two /16 subnets (16K 
addresses) on two adjacent class B networks. Traffic from 
only one class C network contained within this trace is 
considered in this study. The total packet count for each 1-
hour trace is 23,554 and 6,834 respectively. Each 1-hour 
trace is further divided into 5-minute intervals. Signature 
generation is performed on the traffic obtained in every 5-
minute interval. To minimize the number of packets that the 
signature generation module needs to process, some simple 
filtering is performed on the trace: (i) only incoming packets 
destined for the target network are considered, (ii) only TCP 
packets with the PUSH flag set are taken for fingerprint 
generation. The methods, however, can be used for other 
attack packets (i.e. UDP-based attacks) as well. All data in 
each packet is considered for analysis (i.e., no static 
SNAPLEN is utilized). We have chosen to examine 
contiguous blocks of time over random time samples in 
order to reflect realistic attack detection. In practice, 
sustained scanning/propagation activity from a single host 
operating at a particular time interval is common. Thus, we 
wanted to get a sense of how this detection would operate in 
a real-time environment.   

4.1 FPSW 

   As previously mentioned, because of the potential large 
number of fingerprints that can be generated using the 
FPSW scheme, it is desirable to find ways to reduce the 
number of signatures to be retained for future intrusion 
detection purposes. To accomplish this, the simple IP 
address dispersion algorithm proposed by Yegneswaran et 
al. (2005) has been implemented. This algorithm is well 
suited for detecting rapidly spreading worms, by observing 
the frequency of distinct source and destination IP addresses 
of packets carrying a particular fingerprint. If a single 
fingerprint is sent from at least n distinct source IPs, and is 
destined to at least n distinct destination IPs, then, it is 
retained. A further trimming of the fingerprint pool is 
performed for each test by discarding fingerprints generated 
from data chunks with a high prevalence of NULL bytes 
(i.e. {00, 00, 00, 00, 00, 00, 00, 80}). These fingerprints are 

far too general, and have little value for detecting malicious 
traffic. 
   To cope with polymorphic worms, we want to include 
additional signatures among those not retained but were 
created by payloads that bear similar resemblance to those 
with retained signatures. To do so, we use Levenshtein Edit 
Distance algorithm (Levenshtein 1965) to find similar 
fingerprints (amongst those that have not been retained) to 
the ones that have been retained for each 5 minute interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3   Signature counts for 2 1-hour traces 
 

 
 
   Figure 3 contains two graphs representing the application 
of classification and clustering against the FPSW scheme 
for the two one-hour capture intervals. Each graph interval 
(a five minute portion from the trace) increases 
cumulatively, with only new signatures being added to the 
total pool. Classification (using the algorithm described 
above) was performed at two different thresholds (T: T = 3 
and T = 5. From the graphs, we see that thousands of 
signatures are discarded at T = 3, while only a slight 
decrease occurs from T = 3 to T = 7. When the clustering 
algorithm (also described above) is applied at both 
thresholds, we see a slight increase in the signature pool, as 
expected. Via clustering, a total of 274 signatures are added 
to the signature pool, with about 23 signatures added per 5-
minute interval in hour 1, and 111 signatures with about 9 
signatures added per 5-minute interval in hour 2. Thus, we 
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are able to tune the signature pool accordingly, with the 
maximum amount of useful signatures retained. 

From what has been shown thus far, it is clear that FPSW 
has the potential to generate a large number of signatures. 
So, in response, we are interested in knowing the minimum 
amount of fingerprints needed to recognize malware 
variants. Thus, we mold the FPSW process into a multi-
stage, computational pipeline, which will output a minimum 
set of fingerprints for suspected malicious traffic. These 
fingerprints will be stored for future detection use. Figure 4 
shows the process of this pipeline. The first three stages, 
which have already been briefly described, pull traffic from 
the network, generate Rabin fingerprints, and classify the 
prints for retention.  The fourth stage generates a minimum 
fingerprint set by finding the minimum intersection of 
fingerprints that covers all connection flows between set 
time intervals (in our testing, 5 minute windows in an hour) 
per destination port. After K windows (in our testing, 
K=12), we have M signatures retained. We check how many 
suspicious packets (those from flows which are retained due 
to the IP address dispersion rule) match each signature and 
retain the top W (W sets to 3). Fingerprints that are not 
specific enough (those with many ‘00’ groupings) are 
immediately discarded. 

 
  

 
 

 
Figure 4   FPSW Pipeline 

 
With fingerprint reduction, we can get an idea of the 

utility of the FPSW scheme. Tables 1 and 2 display the 
results of this process for the WebDAV Search exploit. The 
first column in each table indicates the real instances of the 
exploit in the sample data (determined by snort IDS 
analysis). Two different classification thresholds are shown 
(T = 3 and T = 7), with total unique prints increasing as time 
progresses. As expected, we retain fewer prints as the 
classification threshold is increased. Finally, the last column 
in each table represents the minimum number of fingerprints 
needed to identify all malicious flows per time interval.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1   WevDAV Hour 1 
 

 
Between both hours, a final total of three unique prints are 

needed to identify all real instances of WebDAV present. In 
order to assess the false positive rate, we processed an entire 
month’s worth of benign network traffic, which resulted in 
498,020 total fingerprints. Out of this, 125 instances 
matched the 3 fingerprints isolated for WebDAV. 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Table 2   WevDAV Hour 2 
 

We also conducted tests against known instances of the 
Welchia worm. Such testing produced interesting results 
regarding malware variants. In table 3, we see that the 
maximum number of fingerprints needed to identify all 
instances in each flow per interval is 23, with a complete 
total of 23 unique fingerprints needed for the whole hour 
trace. In table 4, this number increases to 43. Specifically, at 
time interval 45, we note a variation of Welchia that was not 
present in the first hour. Despite this final number of 
fingerprints being larger than WebDAV’s 3, it is still a 
significant improvement over 298 prints retained when T = 
7. As with WebDAV, the false positive rate is also rather 
low. Applied to the same month of benign traffic as 
WebDAV, we find 681 instances of false matches to 
Welchia’s fingerprints. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Table 3   Welchia Hour 1 
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Table 4   Welchia Hour 2 
 
 

4.2 VPMB 
 
To test this method, multiple polymorphic versions of the 
Blaster worm, Welchia worm, and WebDAV Search exploit 
were created using the ADMmutate (K2 1998) kit. Another 
experiment was devised with two intents: (a) to see if 
consistent signatures are produced between different 
polymorphic versions of the same exploit, and (b) to see if 
the false positive rate will increase if more fingerprints are 
retained.  In this experiment, two polymorphic worm 
packets of each type were injected into every 5-minute 
interval of the two hour-long traces and the VPMB scheme 
is used to see how many signatures are retained and how 
many worm packets of these 3 types are retained. 
  Tables 5 and 6 show the success and false-positive rate of 
the VPMB scheme. Using the 20-byte look-ahead window 
size, the VPMB scheme was able to identify all the worm 
packets that belong to these three types of malicious traffic. 
In testing, all six additional pieces of malicious traffic were 
detected, with only a single signature being generated for 
each distinct type. The performance of VPMB is worse with 
a 10-byte or a 5-byte look-ahead window. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Table 5   Hour 1: VPMB, false positives - only three signatures 
are expected (signatures are cumulative) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6   Hour 2: VPMB, false positives - only three signatures 

are expected (signatures are cumulative) 
 

 
Additional packets are classified as “worm” packets 

because the generated signatures are not specific enough; 
for each time interval, only three signatures are expected. In 
Table 5, the false positive rate is the highest with a 5-byte 
look-ahead window, yet, even at this low look-ahead size, 
the worst interval, at '40', only adds 13 false signatures. 
With a 10-byte window, only one false signature is added at 
times '25' and '30'. Finally, with a 20-byte window, all false 
positives are eliminated. Table 6 follows closely to Table 5, 
with the exception of one false signature added at time '50' 
for the 20-byte look-ahead series. 

Figure 5   FPSW vs. VPMB 
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In Figure 5, the two graphs represent the cumulative 
fingerprint counts for VPMB and FPSW. With this 
comparison, we see that far fewer fingerprints are generated 
overall in the VPMB scheme. Both hours show roughly 100 
unique fingerprints added by the end of each hour. Because 
VPMB is more suited toward buffer overflow detection, if it 
doesn't find an appropriate breakmark (i.e. a series of NOPs) 
then it will take a fingerprint over the entire packet. This 
may not have the specificity of fingerprints generated by 
FPSW. 

5 SEMANTICS-AWARE DETECTION METHODOLOGY 

New malware or worms that have appeared recently indicate 
that the authors of such malicious code often use code 
obfuscation to evade IDSs that use static signatures. There 
are two forms of code obfuscation: polymorphism and 
metamorphism. Traditional polymorphism has taken the 
form of an encrypted body of code with an attached (and 
often obfuscated) decryption routine. The encryption 
technique used is good enough to fool pattern-matching 
IDSs. Metamorphic code relies on the obfuscation of the 
entire code base, including code transposition, equivalent 
instruction substitution, jump insertion, NOP insertion, 
garbage instruction insertion, and register reassignment. 
Figure 6 shows a simple decryption routine and two 
obfuscated variants of that same decryption routine. The 
decryption routine shown in Figure 6(a) consists of a loop 
that performs an xor of a memory location against a static 
key, followed by an increment of the memory address to the 
next location. Figure 6(b) makes several changes to the code 
in Figure 6(a), including obscuring the key by adding mov 
and add instructions that work with a register. The inc 
instruction is also substituted with an add instruction. 

 

 

 

 

 

 

 

 

 
 

Figure 6   Three equivalent code routines 
 

   These seemingly minor changes are good enough to fool 
a pattern matching IDS. Figure 6(c) improves on 6(b) by 

adding garbage instructions, and changing the code order 
while preserving the execution sequence with jmp 
instructions. One can think of a plethora of equivalent 
programs – thus, we must rely on the meaning of the code, 
and not its syntax, for reliable detection. 
   Christodorescu et al. (2005) reduce the problem of 
semantic equivalency to a template matching problem. In 
essence, if we can create a template describing the 
expected behavior of a piece of code, we can match it to an 
actual code routine to see if the tested code exhibits the 
same behavior. Stated formally in Christodorescu et al. 
(2005), “A program P satisfies a template T (denoted as P 
⏐= T) iff P contains an instruction sequence I such that I 
contains a behavior specified by T.” A template will consist 
of a sequence of instructions, along with its associated 
variables and symbolic constants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7   A template and matching assembly code segment 
 

  In Figure 7, we show an instance of a template on the left, 
and a matched assembly code segment on the right. The 
template shown is designed to match the decryption routine 
described in Figure 6. Each template is simply a description 
of the behavior we expect from a known routine – not the 
exact syntax that will show up in a code fragment. By 
looking at the assembly code segment on the right, we see 
that the code segment does not have a one-to-one 
correspondence with the template but the behavior defined 
by the template is present in the code routine. Thus, we can 
construct an algorithm to locate patterns defined in 
templates in real assembly code segments. 
  While Christodorescu et al. (2005) formalizes the template 
matching problem rather nicely, it presents a somewhat 
limited engineering approach to intrusion detection. The 
system that the authors built currently assumes that malware 
samples are available as inputs to their system. In order for 
the semantics-aware approach to be useful in a NIDS, a 
classifier needs to be provided so that semantic analysis is 
only performed on a small percentage of suspicious traffic. 
In addition, we believe that false positives are bound to 
emerge unless a good classifier is provided. For example, 
during the course of this research, we identified several 
legitimate programs (Crypkey 2006), (ASPack 2006) that 
obscure binaries with simple encryption routines as a form 
of copy protection. Locating a decryption loop (the primary 
test by Christodorescu et al. (2005)) within a program 
protected by one of these applications will signal a false 

decode:
  xor byte ptr [eax], 95h
  inc eax
  loop decode

   (a) Simple xor based decryption routine

decode:
  mov ebx, 31h
  add ebx, 64h
  xor byte ptr [eax], ebx
  add eax, 1
  loop decode

   (b) 2nd instance of xor decryption routine

decode:
  mov ecx, 0
  inc ecx
  inc ecx
  jmp    one

 two:      add eax, 1
  jmp three

 one:   mov ebx, 31h
  add ebx, 64h
  xor byte ptr [eax], ebx
  jmp two

 three:   loop decode

   (c) obfuscated instance of xor decryption
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alert. As copy protection schemes begin to incorporate 
methods reminiscent of code circulating in the computer 
underground, we expect the false positive rate of the 
detection scheme based on purely checking installed binary 
programs on an end-host as described by Christodorescu et 
al. (2005) to grow accordingly. However, it is highly 
unlikely for copy protected program to be embedded in a 
web request sent by a scanning source, thus, one can easily 
differentiate between the two scenarios using a smart traffic 
classifier. Thus, we incorporate (a) a traffic classifier, and 
(b) a binary data identification and extraction module in our 
prototype. The combination of these features, and the 
semantic analysis allow the NIDS system we have built to 
be more effective than other NIDSs that are based on 
syntactic pattern matching approaches. In addition, our 
NIDS is more efficient than that reported by Christodorescu 
et al. (2005). 

6 SEMANTIC-AWARE NIDS 

Motivated by the work in Christodorescu et al. (2005), we 
developed a full NIDS with semantic-aware capability. Our 
NDIS segregates suspicious traffic from regular traffic flow, 
extracts binary data from suspicious traffic and performs 
semantic analysis on the binary data in order to identify 
potential threats. Such a NIDS does not rely on fingerprints 
or other syntax based methods. Figure 8 shows the system 
architecture of our NIDS. It consists of five major 
components, namely (a) traffic classifier, (b) binary data 
identification and extraction module, (c) disassembler, (d) 
intermediate representation generator, (e) semantic analyzer. 
This NIDS can be deployed on a standalone machine 
connected to the network. 
 
6.1 Traffic Classification 
 
  Traffic classification is necessary to determine which 
packets are “interesting” and require further analysis. While 
it is possible to pass all traffic directly to the “Binary 
Detection and Extraction” module, it is more efficient to 
prune the traffic sent to the later stages, as they are very 
CPU-intensive. Currently, two classification schemes are 
implemented in our prototype system. The first is a simple  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8    The semantic-aware NIDS architecture 
 

and effective honeypot scheme. When the system is 
initialized, it is given a list of decoy hosts that exist for no 
other purpose than to attract unsolicited traffic (the 
effectiveness of honeypots has been explored in-depth by 
the Honeynet Project (2006)). Any sending host emitting 
traffic destined for a honeypot address is considered 
suspicious; and any packets sent by such a host will be 
analyzed. 

The second scheme is a bit more complicated, and is 
useful for the detection of widespread worm traffic. 
Initially, we note the un-used IP address space in our 
network, with the premise that any traffic repeatedly 
destined to the un-used address space may be indicative of 
malicious scanning. If a host sends an initial packet to an 
un-used address, a count n is initialized. If we continue to 
observe this host sending additional packets to other un-
used addresses, the count will be incremented until it 
reaches a threshold t, at which point, packets emanating 
from that suspicious host will be considered for further 
analysis. 
 
6.2 Binary Detection and Extraction 
 
   In this work, we are interested in examining binary threats 
primarily in the form of buffer overflow exploits (we do not 
currently support detection of textual web attacks, brute 
force password attacks, etc.). Thus, we need a way to 
identify binary data within packet payloads. To accomplish 
this task, we need to understand how buffer overflow 
exploits are constructed and presented to a victim host. 
 
 
 
 
 

Figure 9    Format of buffer overflow exploits  
    
   Traditional buffer overflow exploits (Figure 9) have taken 
the following form: a region of NOP instructions at the 
lowest address region on the stack, followed by the 
instructions the attacker wishes to execute, followed by a 
series of return addresses that will overwrite the return 
pointer of the subroutine and point back into the stack. 
Historically in IDS, it has been easy to detect the NOP 
region, as it was only composed of a repeating series of the 
same instruction (i.e. 0x90 for the x86 architecture). 
However, this is no longer the case – polymorphic exploit 
generators can use a whole host of instructions that have 
“NOP-like” behavior, thus making the NOP region variant. 
This leaves us with the return address region as a possible 
place to observe some invariant data. Only the least 
significant byte can be varied, since the return address must 
point back to a valid address in the buffer. 
   In practice, we observe network buffer overflow exploits 
to consist of a well-formed initial application layer protocol 
request, with exploit content usually resembling (but not 
necessarily matching exactly) Figure 9 encapsulated within 
it. By noting what is expected in a protocol request, and 
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what is abnormal, we can often locate malicious binary 
content. Figure 10 displays the content of the Code Red II 
worm exploit. Here, a well-formatted HTTP GET request is 
made to a module of the IIS webserver. A stream of 
repeated ‘X’ characters initiates the overflow, and these 
characters are followed by the Unicode data. Our module 
has the ability to distinguish between acceptable protocol 
usage and suspicious repetition. Thus, we can locate the 
approximate region where we believe the binary content is 
located, and extract it. In the case of Unicode data (as is 
observed in Figure 7), we translate it into an appropriate 
binary form, for further analysis. This process will yield 
some binary data that is benign, but it dramatically cuts 
down on the amount of data that must be processed by the 
disassembler which is the slowest stage in our system. This 
binary identification and extraction process can be bypassed 
but it will result in a system with much degraded 
performance. 
       
 
 
 
 
 
 

 
 
 

Figure 10    Code Red II exploit portion 
 

6.3 Semantic Analysis 
 
Because we have chosen a specific commercial product, 

IDA Pro (DataRescue, 2006) for our disassembler stage, our 
NIDS can only disassemble x86 code at the present. The 
binary detection and extraction stage produces special 
binary frames (binary data extracted from network packets) 
in a format that can be processed by the disassembler. Once 
an assembly code representation is generated by the 
disassembler, we prune the code to include only the 
instructions we are interested in. Any excess code from the 
program frame is discarded. 

At this point, we have a sequence of instructions that we 
can analyze semantically. The semantic analyzer uses the 
template matching scheme Christodorescu et al. (2005) that 
we have described in Section 5. The templates that we built 
have the ability to handle out of order code, NOP insertion, 
junk instruction insertion, and register reassignment. If a 
piece of code matches one of our templates, an alert is 
generated, and further action may be taken against the 
offending IP address. 

7 SYSTEM EVALUATION  

   We have conducted an extensive evaluation of our 
semantic NIDS, against real malware samples and captured 
network traffic. All of our tests were performed on an Intel 

P4 2.8Ghz system with 512MB of memory. One of our 
primary goals with this work is to establish a reliable 
method for detecting polymorphic exploit instances. Thus, 
we evaluate two popular toolkits for polymorphic exploit 
generation, along with a publicly available exploit known to 
contain polymorphic shellcode. We also test a month’s 
worth of benign traffic, with classification disabled (all 
packet payloads are analyzed). Our preliminary results are 
extremely promising: we observe no false positives when 
we analyzed the benign traffic and we can nearly detect all 
polymorphic versions of malicious contents generated using 
ADMmutate (K2 1998) and Clet engine (CLET Team 
2003). 
 
 
 
7.1 Linux Shell Spawning 
 
   In this first test, we select eight different remote exploits, 
which can spawn a shell in a machine running the Linux 
operating system. A template is created (Figure 11) to match 
the relevant system calls associated with this behavior. It 
can detect shells created as an immediate instance of the 
exploit, and, with an extension, those that are bound to a 
separate network port. In our experiment, we built an 
exploit generator tool that sends exploit packets to a 
honeypot machine registered with the NIDS. All eight 
exploits are successfully detected as spawning a shell, while 
the two that bind the shell to a different port are also noted 
as such. 
 
 
 

  
Figure 11    template for Linux shell spawning code 

 
    
 
 
   The results for this first set of experiments are tabulated in 
Table 7.  The running time for these eight instances ranges 
from 2.36 seconds to 3.27 seconds. The average binary code 
size is less than 10Kbytes for these exploits. As a 
comparison, we ran two variants of the Netsky virus with an 
average code size of 22 Kbytes through our program and it 
takes about 6.5 seconds each time. The time reported in 
Christodorescu et al. (2005) is about 40 seconds. 

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX%u9090%u6858%cbd3
%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u
cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b
00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0
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Table 7   Linux shell spawning buffer overflow exploits 
 

7.2 Polymorphic Shellcode Detection 
 
   To detect polymorphic code, we create a template that 
captures the decryption loop functionality described in 
Section 5. Then, we create a tool that can generate 
numerous exploits towards a honeypot machine that was 
registered with the NIDS. The first test we perform is to 
verify that our system can detect the iis-asp-overflow.c 
exploit based on the template we designed. This particular 
exploit has a decryption routine prefixed to an encoded 
shell-spawning region of code. The shellcode is encoded to 
evade detection by IDSs that employ pattern-matching 
techniques. Using the template we design, our system was 
able to detect the decryption routine. The running time for 
this test is 2.14 seconds. 
   
 
 
 
 
 
 
 
 
 
 
 

Figure 12  template for alternate ADMmutate decryption loop 
 
The ADMmutate kit (K2 1998) is a popular polymorphic 

shellcode generation toolkit. It incorporates NOP-like 
instruction insertion, garbage instruction insertion, 
equivalent instruction replacement, and out-of-order code 
sequencing to obscure its decryption routine. For testing, 
100 instances of polymorphic payloads were generated, and 
inserted into a generic network buffer overflow exploit. As 
shown in Table 8, the first test which uses the template in 
Fig. 7 yielded only a 68% detection rate. Further manual 
inspection of the assembly code generated by our NIDS led 
us to establish that ADMmutate incorporates one of two 
distinct methods for its decryption routine. The first is the 
xor decryption our template can match, while the second is 
a decoding scheme involving a sequence of mov, or, and, 
and not instructions that perform operations on a single 

memory location and register pair. Once we developed an 
enhanced template (shown in Figure12) that can match such 
behaviors, we achieve 100% detection of all shellcodes 
generated by ADMmutate. 
 
 
 

 
 
 
 
 
 

Table 8   Polymorphic shellcode detection 
 
The Clet engine (CLET Team 2003) is another popular 

tool for generating polymorphic shellcode. It relies on 
obscuring an xor based decryption routine in a fashion that 
will defeat data mining approaches to IDS. Thus, it 
incorporates many of the same features as ADMmutate, but 
Clet can also score the feature distribution probabilistically, 
so that the packet can appear to be “normal traffic.” Our xor 
decryption template matched all 100 shellcode instances 
that Clet generated. 
 
7.3 Code Red II Worm Detection 

 
A template is devised to match the initial exploitation 

vector of the Code Red II worm. We test this template 
against 12 5-minute traces collected from two Class B 
production networks, each with a total packet count of over 
200,000. Before evaluation, we note the correct number of 
instances of Code Red II within each capture. The results 
are tabulated in Table 9. From Table 9, one can note that 
every instance is classified and matched correctly by our 
NIDS. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 9   Detection of the Code Red II worm 
 

7.4 False Positive and Negative Evaluation 
 
   For a final test, we disabled traffic classification on the 
NIDS, and examined every packet’s payload in a month’s 
worth of traffic captured from two Class C networks (a total 
capture of 566MB). Most of the packets in this trace are 
legitimate web traffic. The traffic was examined 
beforehand, to ensure none of the threats we are attempting 
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to detect with our current template set (decryption routines, 
shell spawning, Code Red II memory addressing) were 
present. No false positives were reported from our template 
matching module; this is consistent with the findings of 
Christodorescu et al. (2005), though now confirmed in the 
network scenario. 
   Our experiments so far show no false negatives. This is 
not to say that our current templates will be able to handle 
all future buffer overflow exploits. We anticipate that in 
future, one may conceive of new ways to exploit buffer 
overflows using a different format from what is shown in 
Figure 9. This would drive up the false negative rate if the 
current set of templates could not match the new 
behaviours. As new attack classes emerge, researchers must 
respond with templates to match the attack behaviours. 
Thus, we have not eliminated completely the need for 
human intervention in IDS, but have managed to reduce the 
threat posed by polymorphic and metamorphic variants of 
known attack classes.  

7 CONCLUSION AND FUTURE WORK  

In this paper, we have described both syntax-based and 
semantic based approaches for dynamic network intrusion 
detection. For syntax-based approaches, we evaluated a 
fixed-partition and variable-length partition sliding-window 
scheme for automatic worm generation. Our results indicate 
that the variable length partition scheme is more flexible 
and can handle several types of polymorphic worms. To 
deal with more sophisticated polymorphic and metamorphic 
worms, we propose a semantic-aware approach. We have 
designed and built a NIDS with semantic analysis 
capability. We have performed extensive tests on our 
prototype system. Our results show that using high quality 
templates, our system is able to detect a wide variety of 
code exhibiting the same behavior, as opposed to the same 
formal syntax. Our experimental evaluation shows that our 
system does not produce any false positives when tested 
against a network trace of benign traffic. In the near future, 
we intend to classify more exploit behaviors so that we can 
generate additional useful templates that can be used in our 
NIDS to detect additional families of malicious traffic (i.e. 
email worms). Moreover, we will continue to advance our 
understanding of polymorphic behavior in malicious 
software. One can envision a multitude of encryption 
schemes used in tandem to obscure the behavior of a 
malicious payload. A template that detects a simple loop 
may be sufficient for detection in a suspicious context (i.e. a 
web request with x86 executable content).  Finally, we also 
intend to optimize our implementation so that it can run 
even faster than what has been achieved. 
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