
Int. J. Security and Networks, Vol. 3, No. 1, 2008, http://www.inderscience.com/offer.php?id=16199 1

Copyright © 2008 Inderscience Enterprises Ltd.

Syntax vs. Semantics: Competing
Approaches to Dynamic Network
Intrusion Detection
Walter Scheirer*
Department of Computer Science,
University of Colorado at Colorado Springs, CO 80918, USA
E-mail: wjs3@vast.uccs.edu
*Corresponding author

Mooi Choo Chuah
Department of Computer Science and Engineering,
Lehigh University, PA 18015, USA
E-mail: chuah@cse.lehigh.edu

Abstract: Malicious network traffic, including widespread worm activity, is a growing
threat to Internet-connected networks and hosts. In this paper, we consider two competing
approaches to dynamic network intrusion detection: syntax based and semantics based
approaches. For the syntax driven approach, we propose two sliding window based
schemes to generate potential worm signatures automatically. Since syntax based
approaches cannot cope well with sophisticated polymorphic and metamorphic worms, the
semantics-based approach is a better alternative. Our contribution in this work is threefold:
(a) our syntax-based scheme that uses variable-length partition with multiple breakmarks
can detect many polymorphic worms, (b) we believe our semantic-based prototype is the
first NIDS that provides semantics-aware capability and our system is more efficient than
what is reported by Christodorescu et al (2005), (c) our designed templates can capture
polymorphic shellcodes with added sequences of stack and mathematic operations.

Keywords: network security; computer security; intrusion detection; semantics.

Biographical Notes: Mooi Choo Chuah received the first class honors Bachelor’s degree
in electrical engineering from University of Malaya, Malaysia and the Master’s and Ph.D.
degrees from the University of California, San Diego. She is an associate professor of
Computer Science and Engineering Department at Lehigh University. Her current research
interests include Internet and wireless security, system and protocol design for Disruption
Tolerant Networks, adhoc and sensor network design.

Walter Scheirer received his Bachelor’s and Master’s degrees in computer science from
Lehigh University. His primary research interest is computer security, however, he has also
participated in research in the fields of bioinformatics, networking, and computer vision.
Walter is currently pursuing a Ph.D. in computer science at the University of Colorado at
Colorado Springs.

1 INTRODUCTION

In recent years, computer intrusion has been on the rise. The
popularity of the Internet and the widespread use of
homogeneous software provide an ideal climate for
infectious programs. The cost of viruses and worms in 2002
was estimated to be 45 billion dollars (Reuters 2003). In
2003, this number jumped to 55 billion dollars (Reuters
2003). Much money has to be spent on researching
techniques that can fend off intrusion attempts such that
computer systems can operate effectively. A popular

technology called the Intrusion Detection System (IDS) has
emerged to identify and block intrusion attempts. Popular
network IDS (NIDS) systems such as Snort (Roesch 1999)
and Bro (Paxson 1998) utilize a signature-based approach to
detect malicious network traffic. In these systems, static
signatures of known attacks are used to identify attack
packets. A major drawback of this approach is that unknown
attacks cannot be detected – the ones, which conceivably
will cause the most damage.

Typically, new attacks are detected in an ad hoc fashion
through a combination of intrusion detection systems

2

alerting potential attacks, and skilled security personnel
manually analyzing traffic to generate attack
characterization. Such an approach is clearly not sufficient
since it may take hours to generate a new worm signature.
In recent studies by Moore et al. (2004), the authors suggest
that if the attack traffic is indicative of a worm outbreak,
effective containment may require a reaction time of well
under sixty seconds. Thus, new techniques that can help to
identify threats from unseen worms or exploit packets need
to be devised.

In this paper, we discuss two competing approaches for
dynamic network intrusion detection, namely the syntax-
based and semantic-based approaches. Sliding window
schemes as presented by Kim et al. (2004), Singh et al.
(2004), and Newsome et al. (2005) are syntax-based
approaches that partition suspicious worm payloads to
generate worm signatures. They are based on the premise
that some portion of the malicious codes will inevitably be
invariant, despite attempts to obscure their true natures for
detection avoidance. In this paper, we describe two sliding
window schemes. One scheme uses fixed-length partition
while the other uses variable-length partition. To minimize
the number of signatures that are retained, we use similar
threshold-based unique source/destination IPs approach
described in Kim et al. (2004). We also use clustering
algorithm to include similar signatures so that the false
negative rate can be reduced. Via extensive traffic analysis,
we demonstrate that one of the schemes called the variable
length partition with multiple breakmarks (VPMB) scheme
is effective in detecting several polymorphic worms.

While the syntax-based approaches can catch many
polymorphic worms, they will still miss certain categories
of polymorphic worms. A worm author may craft a worm
that changes substantially its payload on every successive
spreading attempt, and thus evades matching by any single
substring signature that does not also occur in innocuous
traffic. This motivates us to propose another NIDS with
semantics-aware capability. The prototype system that we
have built can potentially identify threats from some
unknown malicious network traffic. This work is an
extension of the approach presented in Christodorescu et al.
(2004). The semantics-aware malware detection algorithm
of Christodorescu et al (2005) is an extremely powerful tool
for program profiling. Based on the observation that certain
malicious behaviors appear in all variants of a certain kind
of malware, the authors propose using template-based
matching to detect malware. Their approach looks for a
match of program behaviors rather than program syntax
matching. In this manner, polymorphic and metamorphic
code instances can be identified right along with their static
counterparts. However, in Christodorescu et al. (2004), the
authors only perform experiments on a non-networked host
with standalone virus samples as well as evaluating their
templates against a set of benign programs. As most threats
to end-systems now emanate from the Internet, much in the
form of self-propagating network code, network enabled
detection is critical. Thus, in this paper, we report on a full-
featured semantics-aware network intrusion detection

system we have built. Our system can detect not only
viruses, but remote exploits, including worm traffic.
Through rigorous testing, we show that semantic detection
is an extremely powerful tool for identifying static and
polymorphic network exploits. Our system can perform
more efficiently than the system presented in
Christodorescu et al. (2004).

The rest of the paper is organized as follows: In Section 2,
we describe some related work and discuss how several
pieces of work motivate this research. In Section 3, we
describe the motivation for three sliding window schemes
that we propose for the syntax-based approach. In Section 4,
we present our experiments and results we obtained using
the syntax-based approach. In Section 5, we describe the
semantic analysis of malicious code, and discuss how binary
exploits work. In Section 6, we present the system
architecture of the NIDS we have built and describe in detail
how different stages of the system work. We describe our
experiments and the results we obtained in Section 7.
Finally, we summarize our findings and discuss some future
work that we intend to explore in Section 8.

2 RELATED WORK

Much research has been devoted to intrusion detection in
recent years. Two enormously popular open source tools,
Snort (Roesch 1999) and Bro (Paxson 1998), have shown
that static signature based IDSs can be quite successful in
the face of known attacks. Combined with automatic
monitoring and incident response, system administrators
have a powerful tool against network attacks. In Locasto et
al. (2004), the authors present the case for collaborative
intrusion detection system where intrusion detection nodes
cooperate to determine if a network attack is taking place
and take corrective actions if it does. Others have sought to
use statistical approaches to detect worm outbreaks. In Gao
et al. (2004), the authors propose a method to identify a
worm victim by observing if the number of scans per second
it performs exceeds a certain threshold. The numbers of
worm victims observed in successive windows are then
compared to the numbers predicted using a typical worm
spread model and if they match, then a worm outbreak is
declared.

In Kim et al. (2004) and Singh et al. (2004), the authors
show that byte-level analysis of packet payloads can yield
useful signatures for worm detection. We referred to this as
the syntax-based sliding window approach. Such sliding
window schemes are based on the premise that some portion
of malicious code will inevitably be invariant despite
attempts at obscuring its true nature for detection avoidance.
In this approach, the payload of a packet is partitioned into
multiple chunks when a hosen breakmark is detected and
Rabin fingerprints of these data chunks are generated. There
is no comparison as to whether a fixed or variable partition
works equally well. Thus, we proposed and evaluated two
schemes that compare between fixed and variable-length
partitions. In addition, we also extend the work in Kim et al.
(2004) by using a set of breakmarks rather than a single

SYNTAX VS. SYMANTICS: COMPETING APPROACHES TO DYNAMIC NETWORK INTRUSION DETECTION 3

breakmark as described in Singh et al. (2004). Our multiple
breakmark approach is similar to a recent paper Newsome et
al. (2004). The authors in Newsome et al. (2004) advocate
using disjoint data signatures.

At first glance, these syntax-based approaches looked
promising, however, in practice, they generate far too many
signatures, with a sometimes-undesirable accuracy rate.
With Newsome et al. (2004), we begin to see a research
trend towards using semantics knowledge for potential
worm detection. Here, the authors observe that invariant
byte positions may be disjoint (a result of advanced
polymorphic techniques), but will be present nonetheless as
they are integral to functionality. With Christodorescu et al.
(2004) and Yegneswaran et al. (2006), the application of
semantics is introduced. Non-binary attacks, such as URL
based web server exploits, are analyzed and clustered in a
data-mining scheme in Yegneswaran et al. (2006). In this
work, we built upon the approach described in
Christodorescu et al. (2004). Our contributions in the
semantic aware related approach are three fold: (a) our
prototype is a complete NIDS that provides semantic aware
capability, (b) our implementation is more efficient than
what is reported in Christodorescu et al. (2004), (c) our
designed templates can capture polymorphic shellcodes with
added sequences of stack and mathematic operations.

3 SYNTAX BASED SLIDING WINDOW SCHEMES

In this section, we describe two sliding window-based
schemes that we proposed to automatically generate worm
signatures. As in Kim et al. (2004) and Singh et al. (2004),
we divide the payload of a packet into multiple chunks
either using fixed-size window or variable-length sliding
window until a chosen breakmark is detected. Rabin
fingerprints (Broder 1992), (Rabin 1981) of these data
chunks are then generated.

3.1 Fixed Partition Sliding Window Scheme (FPSW)

 The FPSW scheme incorporates a fixed window size and a
one-byte window sliding. The premise is simple – a series
of fingerprints is generated as the window slides down the
payload of a packet. Common signatures will be seen
among different packet payloads if their contents are
identical or similar. If the window size is small enough,
common data portions can be isolated, despite the variation
in the overall payloads. This is useful for the dynamic
detection of new worm variants (e.g. W32.Blaster versus
W32.Blaster.H). Figure 1 shows the operation of the sliding
window using FPSW. The segments in f0, f1, and f2 will all
be fingerprinted.

 Figure 1 Three instances of an 8-byte sliding window, beginning
at ‘0’ for the FPSW scheme

 One important decision related to this approach is choosing
a proper window size. If the window size is very small (just
a few bytes), the false positive rates will be higher. Certain
short sequences are bound to appear in benign traffic as well
as in malicious code. For example, "GET /" is typically at
the beginning of a basic web request, but could also be
followed by malicious exploit code. A 5-byte window
would match both to the same fingerprint. In addition, the
amount of signatures generated is always related to the
window size. Smaller windows will produce more
fingerprints, thus placing a higher burden on storing and
searching.

3.2 Variable-length Partition with Multiple Breakmarks
Scheme (VPMB)

 In a polymorphic exploit, we often see a static region
initiating a request (for example, a web based exploit may
begin with a normal HTTP GET request), followed by a
region of instructions that function as NOP equivalents (K2
1998). Thus, our VPMB scheme incorporates a one-byte
sliding window approach until a series of breakmarks is
reached. The breakmarks are chosen to be NOP-like
instructions. In this method, using a look-ahead window of
size w bytes, we search and see if all the bytes in this
window can be found in a set of 76 breakmarks that have
been identified. By using an adjustable look-ahead size to
match these NOP-like instructions, we can reliably generate
consistent fingerprints for the static regions preceding the
NOP-like instructions. If they are, then we will generate a
fingerprint using all the bytes that appear before this look-
ahead window. After that, we begin a new search using a
new window that begins 1 byte after the previously matched
position. Figure 2 shows the operation of VPMB with three
different window sizes: 5 bytes, 10 bytes, and 15 bytes. The
same initial byte region is isolated in all three, producing
one, consistent signature.

Figure 2 Example of VPMB with three different window sizes

An appropriate choice of look-ahead size is required to

reduce the false positives. Similar to the FPSW's dilemma,
choosing a smaller size will increase false positives. But
how small is too small? Through testing (as will be shown
later), it has been determined that a size of 20 bytes reduces
false positives to a minimum. Tested cases with values
greater than 20 did not result in further reductions of false
positive but incurred additional processing cost. Insight as
to why 20 is the "magic" look-ahead size is the following -
the probability of finding a grouping of NOP-like
instructions in benign traffic drops considerably as the

4

window size is increased. But in actual exploits, NOP
regions tend to be larger than 20 bytes (so guessing an
address back into the stack is a simpler process). Thus, 20
represents the point at which false positives drop to a
minimum, and true positives don't require excess processing
time.

4 EVALUATION OF SYNTAX BASED APPROACHES

To compare between the two schemes described in Section
3 and to evaluate the false positive/false negative rates of
such a worm detection system, each of these algorithms has
been implemented and applied to two one-hour traces that
are extracted from a whole day's traffic trace that was
kindly made available by Pang et al (2004). In this whole-
day trace, traffic was observed from two /16 subnets (16K
addresses) on two adjacent class B networks. Traffic from
only one class C network contained within this trace is
considered in this study. The total packet count for each 1-
hour trace is 23,554 and 6,834 respectively. Each 1-hour
trace is further divided into 5-minute intervals. Signature
generation is performed on the traffic obtained in every 5-
minute interval. To minimize the number of packets that the
signature generation module needs to process, some simple
filtering is performed on the trace: (i) only incoming packets
destined for the target network are considered, (ii) only TCP
packets with the PUSH flag set are taken for fingerprint
generation. The methods, however, can be used for other
attack packets (i.e. UDP-based attacks) as well. All data in
each packet is considered for analysis (i.e., no static
SNAPLEN is utilized). We have chosen to examine
contiguous blocks of time over random time samples in
order to reflect realistic attack detection. In practice,
sustained scanning/propagation activity from a single host
operating at a particular time interval is common. Thus, we
wanted to get a sense of how this detection would operate in
a real-time environment.

4.1 FPSW

 As previously mentioned, because of the potential large
number of fingerprints that can be generated using the
FPSW scheme, it is desirable to find ways to reduce the
number of signatures to be retained for future intrusion
detection purposes. To accomplish this, the simple IP
address dispersion algorithm proposed by Yegneswaran et
al. (2005) has been implemented. This algorithm is well
suited for detecting rapidly spreading worms, by observing
the frequency of distinct source and destination IP addresses
of packets carrying a particular fingerprint. If a single
fingerprint is sent from at least n distinct source IPs, and is
destined to at least n distinct destination IPs, then, it is
retained. A further trimming of the fingerprint pool is
performed for each test by discarding fingerprints generated
from data chunks with a high prevalence of NULL bytes
(i.e. {00, 00, 00, 00, 00, 00, 00, 80}). These fingerprints are

far too general, and have little value for detecting malicious
traffic.
 To cope with polymorphic worms, we want to include
additional signatures among those not retained but were
created by payloads that bear similar resemblance to those
with retained signatures. To do so, we use Levenshtein Edit
Distance algorithm (Levenshtein 1965) to find similar
fingerprints (amongst those that have not been retained) to
the ones that have been retained for each 5 minute interval.

Figure 3 Signature counts for 2 1-hour traces

 Figure 3 contains two graphs representing the application
of classification and clustering against the FPSW scheme
for the two one-hour capture intervals. Each graph interval
(a five minute portion from the trace) increases
cumulatively, with only new signatures being added to the
total pool. Classification (using the algorithm described
above) was performed at two different thresholds (T: T = 3
and T = 5. From the graphs, we see that thousands of
signatures are discarded at T = 3, while only a slight
decrease occurs from T = 3 to T = 7. When the clustering
algorithm (also described above) is applied at both
thresholds, we see a slight increase in the signature pool, as
expected. Via clustering, a total of 274 signatures are added
to the signature pool, with about 23 signatures added per 5-
minute interval in hour 1, and 111 signatures with about 9
signatures added per 5-minute interval in hour 2. Thus, we

SYNTAX VS. SYMANTICS: COMPETING APPROACHES TO DYNAMIC NETWORK INTRUSION DETECTION 5

are able to tune the signature pool accordingly, with the
maximum amount of useful signatures retained.

From what has been shown thus far, it is clear that FPSW
has the potential to generate a large number of signatures.
So, in response, we are interested in knowing the minimum
amount of fingerprints needed to recognize malware
variants. Thus, we mold the FPSW process into a multi-
stage, computational pipeline, which will output a minimum
set of fingerprints for suspected malicious traffic. These
fingerprints will be stored for future detection use. Figure 4
shows the process of this pipeline. The first three stages,
which have already been briefly described, pull traffic from
the network, generate Rabin fingerprints, and classify the
prints for retention. The fourth stage generates a minimum
fingerprint set by finding the minimum intersection of
fingerprints that covers all connection flows between set
time intervals (in our testing, 5 minute windows in an hour)
per destination port. After K windows (in our testing,
K=12), we have M signatures retained. We check how many
suspicious packets (those from flows which are retained due
to the IP address dispersion rule) match each signature and
retain the top W (W sets to 3). Fingerprints that are not
specific enough (those with many ‘00’ groupings) are
immediately discarded.

Figure 4 FPSW Pipeline

With fingerprint reduction, we can get an idea of the

utility of the FPSW scheme. Tables 1 and 2 display the
results of this process for the WebDAV Search exploit. The
first column in each table indicates the real instances of the
exploit in the sample data (determined by snort IDS
analysis). Two different classification thresholds are shown
(T = 3 and T = 7), with total unique prints increasing as time
progresses. As expected, we retain fewer prints as the
classification threshold is increased. Finally, the last column
in each table represents the minimum number of fingerprints
needed to identify all malicious flows per time interval.

Table 1 WevDAV Hour 1

Between both hours, a final total of three unique prints are

needed to identify all real instances of WebDAV present. In
order to assess the false positive rate, we processed an entire
month’s worth of benign network traffic, which resulted in
498,020 total fingerprints. Out of this, 125 instances
matched the 3 fingerprints isolated for WebDAV.

Table 2 WevDAV Hour 2

We also conducted tests against known instances of the
Welchia worm. Such testing produced interesting results
regarding malware variants. In table 3, we see that the
maximum number of fingerprints needed to identify all
instances in each flow per interval is 23, with a complete
total of 23 unique fingerprints needed for the whole hour
trace. In table 4, this number increases to 43. Specifically, at
time interval 45, we note a variation of Welchia that was not
present in the first hour. Despite this final number of
fingerprints being larger than WebDAV’s 3, it is still a
significant improvement over 298 prints retained when T =
7. As with WebDAV, the false positive rate is also rather
low. Applied to the same month of benign traffic as
WebDAV, we find 681 instances of false matches to
Welchia’s fingerprints.

Table 3 Welchia Hour 1

6

Table 4 Welchia Hour 2

4.2 VPMB

To test this method, multiple polymorphic versions of the
Blaster worm, Welchia worm, and WebDAV Search exploit
were created using the ADMmutate (K2 1998) kit. Another
experiment was devised with two intents: (a) to see if
consistent signatures are produced between different
polymorphic versions of the same exploit, and (b) to see if
the false positive rate will increase if more fingerprints are
retained. In this experiment, two polymorphic worm
packets of each type were injected into every 5-minute
interval of the two hour-long traces and the VPMB scheme
is used to see how many signatures are retained and how
many worm packets of these 3 types are retained.
 Tables 5 and 6 show the success and false-positive rate of
the VPMB scheme. Using the 20-byte look-ahead window
size, the VPMB scheme was able to identify all the worm
packets that belong to these three types of malicious traffic.
In testing, all six additional pieces of malicious traffic were
detected, with only a single signature being generated for
each distinct type. The performance of VPMB is worse with
a 10-byte or a 5-byte look-ahead window.

Table 5 Hour 1: VPMB, false positives - only three signatures
are expected (signatures are cumulative)

Table 6 Hour 2: VPMB, false positives - only three signatures

are expected (signatures are cumulative)

Additional packets are classified as “worm” packets

because the generated signatures are not specific enough;
for each time interval, only three signatures are expected. In
Table 5, the false positive rate is the highest with a 5-byte
look-ahead window, yet, even at this low look-ahead size,
the worst interval, at '40', only adds 13 false signatures.
With a 10-byte window, only one false signature is added at
times '25' and '30'. Finally, with a 20-byte window, all false
positives are eliminated. Table 6 follows closely to Table 5,
with the exception of one false signature added at time '50'
for the 20-byte look-ahead series.

Figure 5 FPSW vs. VPMB

SYNTAX VS. SYMANTICS: COMPETING APPROACHES TO DYNAMIC NETWORK INTRUSION DETECTION 7

In Figure 5, the two graphs represent the cumulative
fingerprint counts for VPMB and FPSW. With this
comparison, we see that far fewer fingerprints are generated
overall in the VPMB scheme. Both hours show roughly 100
unique fingerprints added by the end of each hour. Because
VPMB is more suited toward buffer overflow detection, if it
doesn't find an appropriate breakmark (i.e. a series of NOPs)
then it will take a fingerprint over the entire packet. This
may not have the specificity of fingerprints generated by
FPSW.

5 SEMANTICS-AWARE DETECTION METHODOLOGY

New malware or worms that have appeared recently indicate
that the authors of such malicious code often use code
obfuscation to evade IDSs that use static signatures. There
are two forms of code obfuscation: polymorphism and
metamorphism. Traditional polymorphism has taken the
form of an encrypted body of code with an attached (and
often obfuscated) decryption routine. The encryption
technique used is good enough to fool pattern-matching
IDSs. Metamorphic code relies on the obfuscation of the
entire code base, including code transposition, equivalent
instruction substitution, jump insertion, NOP insertion,
garbage instruction insertion, and register reassignment.
Figure 6 shows a simple decryption routine and two
obfuscated variants of that same decryption routine. The
decryption routine shown in Figure 6(a) consists of a loop
that performs an xor of a memory location against a static
key, followed by an increment of the memory address to the
next location. Figure 6(b) makes several changes to the code
in Figure 6(a), including obscuring the key by adding mov
and add instructions that work with a register. The inc
instruction is also substituted with an add instruction.

Figure 6 Three equivalent code routines

 These seemingly minor changes are good enough to fool
a pattern matching IDS. Figure 6(c) improves on 6(b) by

adding garbage instructions, and changing the code order
while preserving the execution sequence with jmp
instructions. One can think of a plethora of equivalent
programs – thus, we must rely on the meaning of the code,
and not its syntax, for reliable detection.
 Christodorescu et al. (2005) reduce the problem of
semantic equivalency to a template matching problem. In
essence, if we can create a template describing the
expected behavior of a piece of code, we can match it to an
actual code routine to see if the tested code exhibits the
same behavior. Stated formally in Christodorescu et al.
(2005), “A program P satisfies a template T (denoted as P
⏐= T) iff P contains an instruction sequence I such that I
contains a behavior specified by T.” A template will consist
of a sequence of instructions, along with its associated
variables and symbolic constants.

Figure 7 A template and matching assembly code segment

 In Figure 7, we show an instance of a template on the left,
and a matched assembly code segment on the right. The
template shown is designed to match the decryption routine
described in Figure 6. Each template is simply a description
of the behavior we expect from a known routine – not the
exact syntax that will show up in a code fragment. By
looking at the assembly code segment on the right, we see
that the code segment does not have a one-to-one
correspondence with the template but the behavior defined
by the template is present in the code routine. Thus, we can
construct an algorithm to locate patterns defined in
templates in real assembly code segments.
 While Christodorescu et al. (2005) formalizes the template
matching problem rather nicely, it presents a somewhat
limited engineering approach to intrusion detection. The
system that the authors built currently assumes that malware
samples are available as inputs to their system. In order for
the semantics-aware approach to be useful in a NIDS, a
classifier needs to be provided so that semantic analysis is
only performed on a small percentage of suspicious traffic.
In addition, we believe that false positives are bound to
emerge unless a good classifier is provided. For example,
during the course of this research, we identified several
legitimate programs (Crypkey 2006), (ASPack 2006) that
obscure binaries with simple encryption routines as a form
of copy protection. Locating a decryption loop (the primary
test by Christodorescu et al. (2005)) within a program
protected by one of these applications will signal a false

decode:
 xor byte ptr [eax], 95h
 inc eax
 loop decode

 (a) Simple xor based decryption routine

decode:
 mov ebx, 31h
 add ebx, 64h
 xor byte ptr [eax], ebx
 add eax, 1
 loop decode

 (b) 2nd instance of xor decryption routine

decode:
 mov ecx, 0
 inc ecx
 inc ecx
 jmp one

 two: add eax, 1
 jmp three

 one: mov ebx, 31h
 add ebx, 64h
 xor byte ptr [eax], ebx
 jmp two

 three: loop decode

 (c) obfuscated instance of xor decryption

8

alert. As copy protection schemes begin to incorporate
methods reminiscent of code circulating in the computer
underground, we expect the false positive rate of the
detection scheme based on purely checking installed binary
programs on an end-host as described by Christodorescu et
al. (2005) to grow accordingly. However, it is highly
unlikely for copy protected program to be embedded in a
web request sent by a scanning source, thus, one can easily
differentiate between the two scenarios using a smart traffic
classifier. Thus, we incorporate (a) a traffic classifier, and
(b) a binary data identification and extraction module in our
prototype. The combination of these features, and the
semantic analysis allow the NIDS system we have built to
be more effective than other NIDSs that are based on
syntactic pattern matching approaches. In addition, our
NIDS is more efficient than that reported by Christodorescu
et al. (2005).

6 SEMANTIC-AWARE NIDS

Motivated by the work in Christodorescu et al. (2005), we
developed a full NIDS with semantic-aware capability. Our
NDIS segregates suspicious traffic from regular traffic flow,
extracts binary data from suspicious traffic and performs
semantic analysis on the binary data in order to identify
potential threats. Such a NIDS does not rely on fingerprints
or other syntax based methods. Figure 8 shows the system
architecture of our NIDS. It consists of five major
components, namely (a) traffic classifier, (b) binary data
identification and extraction module, (c) disassembler, (d)
intermediate representation generator, (e) semantic analyzer.
This NIDS can be deployed on a standalone machine
connected to the network.

6.1 Traffic Classification

 Traffic classification is necessary to determine which
packets are “interesting” and require further analysis. While
it is possible to pass all traffic directly to the “Binary
Detection and Extraction” module, it is more efficient to
prune the traffic sent to the later stages, as they are very
CPU-intensive. Currently, two classification schemes are
implemented in our prototype system. The first is a simple

Figure 8 The semantic-aware NIDS architecture

and effective honeypot scheme. When the system is
initialized, it is given a list of decoy hosts that exist for no
other purpose than to attract unsolicited traffic (the
effectiveness of honeypots has been explored in-depth by
the Honeynet Project (2006)). Any sending host emitting
traffic destined for a honeypot address is considered
suspicious; and any packets sent by such a host will be
analyzed.

The second scheme is a bit more complicated, and is
useful for the detection of widespread worm traffic.
Initially, we note the un-used IP address space in our
network, with the premise that any traffic repeatedly
destined to the un-used address space may be indicative of
malicious scanning. If a host sends an initial packet to an
un-used address, a count n is initialized. If we continue to
observe this host sending additional packets to other un-
used addresses, the count will be incremented until it
reaches a threshold t, at which point, packets emanating
from that suspicious host will be considered for further
analysis.

6.2 Binary Detection and Extraction

 In this work, we are interested in examining binary threats
primarily in the form of buffer overflow exploits (we do not
currently support detection of textual web attacks, brute
force password attacks, etc.). Thus, we need a way to
identify binary data within packet payloads. To accomplish
this task, we need to understand how buffer overflow
exploits are constructed and presented to a victim host.

Figure 9 Format of buffer overflow exploits

 Traditional buffer overflow exploits (Figure 9) have taken
the following form: a region of NOP instructions at the
lowest address region on the stack, followed by the
instructions the attacker wishes to execute, followed by a
series of return addresses that will overwrite the return
pointer of the subroutine and point back into the stack.
Historically in IDS, it has been easy to detect the NOP
region, as it was only composed of a repeating series of the
same instruction (i.e. 0x90 for the x86 architecture).
However, this is no longer the case – polymorphic exploit
generators can use a whole host of instructions that have
“NOP-like” behavior, thus making the NOP region variant.
This leaves us with the return address region as a possible
place to observe some invariant data. Only the least
significant byte can be varied, since the return address must
point back to a valid address in the buffer.
 In practice, we observe network buffer overflow exploits
to consist of a well-formed initial application layer protocol
request, with exploit content usually resembling (but not
necessarily matching exactly) Figure 9 encapsulated within
it. By noting what is expected in a protocol request, and

SYNTAX VS. SYMANTICS: COMPETING APPROACHES TO DYNAMIC NETWORK INTRUSION DETECTION 9

what is abnormal, we can often locate malicious binary
content. Figure 10 displays the content of the Code Red II
worm exploit. Here, a well-formatted HTTP GET request is
made to a module of the IIS webserver. A stream of
repeated ‘X’ characters initiates the overflow, and these
characters are followed by the Unicode data. Our module
has the ability to distinguish between acceptable protocol
usage and suspicious repetition. Thus, we can locate the
approximate region where we believe the binary content is
located, and extract it. In the case of Unicode data (as is
observed in Figure 7), we translate it into an appropriate
binary form, for further analysis. This process will yield
some binary data that is benign, but it dramatically cuts
down on the amount of data that must be processed by the
disassembler which is the slowest stage in our system. This
binary identification and extraction process can be bypassed
but it will result in a system with much degraded
performance.

Figure 10 Code Red II exploit portion

6.3 Semantic Analysis

Because we have chosen a specific commercial product,

IDA Pro (DataRescue, 2006) for our disassembler stage, our
NIDS can only disassemble x86 code at the present. The
binary detection and extraction stage produces special
binary frames (binary data extracted from network packets)
in a format that can be processed by the disassembler. Once
an assembly code representation is generated by the
disassembler, we prune the code to include only the
instructions we are interested in. Any excess code from the
program frame is discarded.

At this point, we have a sequence of instructions that we
can analyze semantically. The semantic analyzer uses the
template matching scheme Christodorescu et al. (2005) that
we have described in Section 5. The templates that we built
have the ability to handle out of order code, NOP insertion,
junk instruction insertion, and register reassignment. If a
piece of code matches one of our templates, an alert is
generated, and further action may be taken against the
offending IP address.

7 SYSTEM EVALUATION

 We have conducted an extensive evaluation of our
semantic NIDS, against real malware samples and captured
network traffic. All of our tests were performed on an Intel

P4 2.8Ghz system with 512MB of memory. One of our
primary goals with this work is to establish a reliable
method for detecting polymorphic exploit instances. Thus,
we evaluate two popular toolkits for polymorphic exploit
generation, along with a publicly available exploit known to
contain polymorphic shellcode. We also test a month’s
worth of benign traffic, with classification disabled (all
packet payloads are analyzed). Our preliminary results are
extremely promising: we observe no false positives when
we analyzed the benign traffic and we can nearly detect all
polymorphic versions of malicious contents generated using
ADMmutate (K2 1998) and Clet engine (CLET Team
2003).

7.1 Linux Shell Spawning

 In this first test, we select eight different remote exploits,
which can spawn a shell in a machine running the Linux
operating system. A template is created (Figure 11) to match
the relevant system calls associated with this behavior. It
can detect shells created as an immediate instance of the
exploit, and, with an extension, those that are bound to a
separate network port. In our experiment, we built an
exploit generator tool that sends exploit packets to a
honeypot machine registered with the NIDS. All eight
exploits are successfully detected as spawning a shell, while
the two that bind the shell to a different port are also noted
as such.

Figure 11 template for Linux shell spawning code

 The results for this first set of experiments are tabulated in
Table 7. The running time for these eight instances ranges
from 2.36 seconds to 3.27 seconds. The average binary code
size is less than 10Kbytes for these exploits. As a
comparison, we ran two variants of the Netsky virus with an
average code size of 22 Kbytes through our program and it
takes about 6.5 seconds each time. The time reported in
Christodorescu et al. (2005) is about 40 seconds.

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX%u9090%u6858%cbd3
%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u
cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b
00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

10

Table 7 Linux shell spawning buffer overflow exploits

7.2 Polymorphic Shellcode Detection

 To detect polymorphic code, we create a template that
captures the decryption loop functionality described in
Section 5. Then, we create a tool that can generate
numerous exploits towards a honeypot machine that was
registered with the NIDS. The first test we perform is to
verify that our system can detect the iis-asp-overflow.c
exploit based on the template we designed. This particular
exploit has a decryption routine prefixed to an encoded
shell-spawning region of code. The shellcode is encoded to
evade detection by IDSs that employ pattern-matching
techniques. Using the template we design, our system was
able to detect the decryption routine. The running time for
this test is 2.14 seconds.

Figure 12 template for alternate ADMmutate decryption loop

The ADMmutate kit (K2 1998) is a popular polymorphic

shellcode generation toolkit. It incorporates NOP-like
instruction insertion, garbage instruction insertion,
equivalent instruction replacement, and out-of-order code
sequencing to obscure its decryption routine. For testing,
100 instances of polymorphic payloads were generated, and
inserted into a generic network buffer overflow exploit. As
shown in Table 8, the first test which uses the template in
Fig. 7 yielded only a 68% detection rate. Further manual
inspection of the assembly code generated by our NIDS led
us to establish that ADMmutate incorporates one of two
distinct methods for its decryption routine. The first is the
xor decryption our template can match, while the second is
a decoding scheme involving a sequence of mov, or, and,
and not instructions that perform operations on a single

memory location and register pair. Once we developed an
enhanced template (shown in Figure12) that can match such
behaviors, we achieve 100% detection of all shellcodes
generated by ADMmutate.

Table 8 Polymorphic shellcode detection

The Clet engine (CLET Team 2003) is another popular

tool for generating polymorphic shellcode. It relies on
obscuring an xor based decryption routine in a fashion that
will defeat data mining approaches to IDS. Thus, it
incorporates many of the same features as ADMmutate, but
Clet can also score the feature distribution probabilistically,
so that the packet can appear to be “normal traffic.” Our xor
decryption template matched all 100 shellcode instances
that Clet generated.

7.3 Code Red II Worm Detection

A template is devised to match the initial exploitation

vector of the Code Red II worm. We test this template
against 12 5-minute traces collected from two Class B
production networks, each with a total packet count of over
200,000. Before evaluation, we note the correct number of
instances of Code Red II within each capture. The results
are tabulated in Table 9. From Table 9, one can note that
every instance is classified and matched correctly by our
NIDS.

Table 9 Detection of the Code Red II worm

7.4 False Positive and Negative Evaluation

 For a final test, we disabled traffic classification on the
NIDS, and examined every packet’s payload in a month’s
worth of traffic captured from two Class C networks (a total
capture of 566MB). Most of the packets in this trace are
legitimate web traffic. The traffic was examined
beforehand, to ensure none of the threats we are attempting

SYNTAX VS. SYMANTICS: COMPETING APPROACHES TO DYNAMIC NETWORK INTRUSION DETECTION 11

to detect with our current template set (decryption routines,
shell spawning, Code Red II memory addressing) were
present. No false positives were reported from our template
matching module; this is consistent with the findings of
Christodorescu et al. (2005), though now confirmed in the
network scenario.
 Our experiments so far show no false negatives. This is
not to say that our current templates will be able to handle
all future buffer overflow exploits. We anticipate that in
future, one may conceive of new ways to exploit buffer
overflows using a different format from what is shown in
Figure 9. This would drive up the false negative rate if the
current set of templates could not match the new
behaviours. As new attack classes emerge, researchers must
respond with templates to match the attack behaviours.
Thus, we have not eliminated completely the need for
human intervention in IDS, but have managed to reduce the
threat posed by polymorphic and metamorphic variants of
known attack classes.

7 CONCLUSION AND FUTURE WORK

In this paper, we have described both syntax-based and
semantic based approaches for dynamic network intrusion
detection. For syntax-based approaches, we evaluated a
fixed-partition and variable-length partition sliding-window
scheme for automatic worm generation. Our results indicate
that the variable length partition scheme is more flexible
and can handle several types of polymorphic worms. To
deal with more sophisticated polymorphic and metamorphic
worms, we propose a semantic-aware approach. We have
designed and built a NIDS with semantic analysis
capability. We have performed extensive tests on our
prototype system. Our results show that using high quality
templates, our system is able to detect a wide variety of
code exhibiting the same behavior, as opposed to the same
formal syntax. Our experimental evaluation shows that our
system does not produce any false positives when tested
against a network trace of benign traffic. In the near future,
we intend to classify more exploit behaviors so that we can
generate additional useful templates that can be used in our
NIDS to detect additional families of malicious traffic (i.e.
email worms). Moreover, we will continue to advance our
understanding of polymorphic behavior in malicious
software. One can envision a multitude of encryption
schemes used in tandem to obscure the behavior of a
malicious payload. A template that detects a simple loop
may be sufficient for detection in a suspicious context (i.e. a
web request with x86 executable content). Finally, we also
intend to optimize our implementation so that it can run
even faster than what has been achieved.

REFERENCES

ASPack Software. (2006) ‘ASProtect’, Published online at
http://www.aspack.com, Last accessed on 6 Jan. 2006.

Broder, A. (1992) ‘Some applications of Rabin’s fingerprinting
method’, In Renato Capocelli, Alfredo De Santis, and Ugo
Vaccaro editors, Sequence II: Methods in Communications,
Security, and Computer Science, Springer-Verlag, pp. 143-
152.

Christodorescu, M., Jha S., Seshia S., Song, D., and Bryant, R.
(2005) ‘Semantics-aware malware detection’, IEEE Security
and Privacy Symposium, May.

CLET Team. (2003) ‘Polymorphic shellcode engine using
spectrum analysis’, Phrack Magazine, 11(61).

CrypKey. (2006) ‘CrypKey’, Published online at
http://crypkey.com, Last accessed on 6 Jan. 2006.

Datarescue. (2006) ‘IDA Pro – interactive disassembler’,
Published online at http://www.datarescue.com/idabase, Last
accessed on 6 Jan. 2006.

Gao, L., Wu, S., Vangala, S., and Kwiat, K. (2004)) ‘An effective
architecture and algorithm for detecting worms with various
scan techniques’, Proceedings of NDSS.

The Honeynet Project. (2006) ‘Project Homepage’,
http://project.honeynet.org, Last accessed on 6 Jan. 2006.

K2 (1998) ‘ADMmutate 0.8.4’, Published online at
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz, Last accessed
on 6 Jan. 2006.

Kim, V. and Karp, B. (2004) ‘Autograph: toward automated,
distributed worm signature detection.’, Proceedings of the
13th USENIX Security Symposium.

Levenshtein, V. I. (1965) ‘Binary Codes capable of correting
spurious insertions and deletions of ones’, Problems of
Information Transmission, 1:8-17.

Locasto, M., Parekh, J., Stolfo, S., Keromytis, A., Malkin, T., and
Misra, V. (2004) ‘Collaborative distributed intrusion
detection’, Tech Report CUCS-012-04, Department of
Computer Science, Columbia University.

Moore, H.D., Shannon, C., Voelker, G., and Savage, S. (2003)
‘Internet quarantine: requirements for containing self-
propagating code.’, Proceedings of the 2003 IEEE Infocom
Conference, April.

Newsome, J., B. Karp., and Song, D. (2005) ‘Polygraph:
automatically generating signatures for polymorphic worms’,
Proceedings of the IEEE Symposium on Security and Privacy.

Pang, R., Yegneswaran, V., Barford, P., Paxson, V., and Peterson
L., (2004) ‘Characteristics of Internet background radiation’,
IMC ’04: Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement, October.

Paxson, V. (1998) ‘Bro: a system for detecting network intruders
in real-time’, Proceedings of the 7th USENIX Security
Symposium, San Antonio, Texas, January.

Rabin, M.O., (1981) ‘Fingerprinting by Random Polynomials’,
Tech Report TR-15-81, Center for Research in Computing
Technology, Harvard University.

Reuters. (2004) ‘Virus damage estimated at $55 billion in 2003’,
 Published online at http://msnbc.msn.com/id/3979687/. Last

accessed on 6 Jan. 2006.
Roesch, M. (1999) ‘Snort – lightweight intrusion detection for

networks’, Proceedings of the 13th USENIX conference on
System Administration (LISA ’99), Seattle, Washington, pp.
229-238.

Singh, S., Estan, C., Varghese, G., and Savage, S. (2004)
‘Automated worm fingerprinting’, Proceedings of the 6th
USENIX Symposium on Operating System Design and
Implementation.

Stolfo, S., and Wang, K. (2004) ‘Anomalous payload-based
network intrusion detection’, Proceedings of Recent Advances
in Intrusion Detection (RAID), September.

Yegneswaran, V., Griffin, J., Barford, P., and Jha, S. (2005) ‘An
architecture for generating semantic-aware signatures’, 14th
USENIX Symposium on Security, August.

