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Abstract

Camera attribution approaches in digital image forensics have most often been evaluated in a closed set context,
whereby all devices are known during training and testing time. However, in a real investigation, we must assume
that innocuous images from unknown devices will be recovered, which we would like to remove from the pool of
evidence. In pattern recognition, this corresponds to what is known as the open set recognition problem. This article
introduces new algorithms for open set modes of image source attribution (identifying whether or not an image was
captured by a specific digital camera) and device linking (identifying whether or not a pair of images was acquired
from the same digital camera without the need for physical access to the device). Both algorithms rely on a new
multi-region feature generation strategy, which serves as a projection space for the class of interest and emphasizes
its properties, and on decision boundary carving, a novel method that models the decision space of a trained SVM
classifier by taking advantage of a few known cameras to adjust the decision boundaries to decrease false matches
from unknown classes. Experiments including thousands of unconstrained images collected from the web show a
significant advantage for our approaches over the most competitive prior work.
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1. Introduction

With the rise of digital photography, a growing
number of digital images have become associated with
evidentiary pools for criminal and civil proceedings.
This presents an often frustrating dilemma for those
charged with verifying the integrity and authenticity
of such images, since they are not always generated
by known devices, and can be modified with ease [4].
Moreover, with an estimated 250 million images being
added to Facebook every day1 from an enormous set of
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unknown sources, looking for images from a particular
camera of interest becomes a significant challenge.
In this article, we investigate a fundamentally new
approach for the specific problems of Image Source
Attribution and Device Linking in the context of open
set recognition, where not all cameras are known during
training time (Fig. 1).

Similar to a ballistics exam in which bullet scratches
allow forensic examiners to match a bullet to a
particular gun [5], image source attribution techniques
look for artifacts left in an image by the source camera
such as dust on the lens, the interaction between device
components and the light, factory defects, and other
e↵ects [6]. Sensor attribution problems span a variety
of devices such as cameras [7, 8, 1, 2], printers [9, 10],
and scanners [11, 12]. Beyond a basic examination of
the EXIF headers, which contain textual information
about the digital camera type and the conditions under
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Figure 1: Image source camera attribution is the process of identifying whether or not an image was captured by a specific digital camera. Device
linking is the process of identifying whether or not a pair of images comes from the same digital camera – without the need for physical access
to the device. While much progress has been made in both areas, the most promising recent approaches [1, 2, 3] restrict evaluation to a closed
set scenario, where all cameras are known during training and testing. For instance, closed set camera attribution considers only images from
known cameras during training and testing (blue cases in (a)), while closed set device linking considers matched and non-matched pairs of images
from known cameras (blue cases in (b)). A more realistic scenario for real world investigations is open set evaluation, where during testing (the
operational scenario) we must consider images from unknown cameras. For camera attribution, images from unknown cameras should be rejected
to avoid false attribution (e.g. the red arrow cases in (a)). Similarly, pairs of images containing images from unknown cameras should also be
rejected to avoid false linking (e.g. the red/blue and blue/red pairs on the right of (b)).

which the photograph was taken but can be easily
tampered with or destroyed [4], a class of methods
exists that identifies the brand/model of the source
camera [13, 14] by directly considering the image
data. These methods generally perform an analysis of
color interpolation algorithms. However, many camera
brands use components by only a few factories, and
the color interpolation algorithm is the same (or very
similar) among di↵erent models of the same brand of
cameras [4, 6].

Since fine-grained categorization is of more value
to the field of digital image forensics, most source
attribution approaches have the objective of identifying
the specific camera that took a photograph instead
of just the device’s brand and model. There is
some previous work that analyzes device defects for
image source identification [7, 15], as well as artifacts
caused by dust on the lens at the time the image
was taken [8]. The problem with such methods is
that some current camera models do not contain any
obvious defects, while others eliminate defective pixels
by post-processing their images on-board. Further,
some artifacts are strictly temporal by nature and can
be easily destroyed (e.g., the lens may be cleaned or
switched). In response, forensic experts have given
special attention to methods based on sensor pattern
noise (SPN) because they can identify specific instances
of the same camera model by using the deterministic

component of SPN [1, 2]. This component is a robust
fingerprint for identifying source cameras and verifying
the integrity of images because it is the result of factors
such as the variable sensitivity of each sensor element
to light, the inhomogeneity of silicon wafers, and the
uniqueness of manufacturing imperfections that even
sensors of the same model possess [4, 6, 1].

SPN is also useful for cases in which all a forensic
examiner has is a set of photographs and the question
is to determine whether or not the photographs were
taken by the same camera. This challenge is known
in the literature as device linking. With device linking
methods, we can attest that a set of images was taken by
a specific camera by comparing each image to another
image that we know belongs to the specific camera –
without needing physical access to it. This is a practical
problem with potentially important implications in the
age of social media. With the possibility of di↵erent
photo albums spread across sites (Flickr, Facebook,
Picasa, etc.), useful evidence can be isolated if an
investigator knows that certain suspect images came
from the same device, even if she only has access to the
public images, and not the camera itself. Solutions to
this problem also apply to the scenario of discovering
whether or not illegal photos posted on the Internet
were generated by a known stolen camera (when an
investigator is in possession of a collection of reference
images). Further, the commercial space has also
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expressed interest in the device linking problem: a
premium service is already available for public and
private investigators2.

Nearly all of the prior work in image source
attribution and device linking was evaluated in a closed
set scenario, in which one assumes that an image under
investigation was generated by one of n known cameras
available during training. However, it is possible that
the image may have been generated by an unknown
device not available during training (i.e., in the set of
suspect devices under investigation). Therefore, it is
essential to model attribution problems as Open Set
scenarios (Fig. 1), which resemble a realistic situation
where we only have partial knowledge of the world we
are modeling. In this case, we need a classification
model for the few available classes (cameras under
investigation), while trying to take the large unknown
set of unavailable cameras into consideration.

In this article we describe a new feature generation
approach for open set classification, as well as a new
method for adjusting the decision boundary of an SVM
classifier, based on the available knowledge of the world
during training, called decision boundary carving [16].
For image source attribution in an open set scenario,
we obtain better results compared to state-of-the-art
approaches for a very large dataset composed of 13,210
images from 400 di↵erent cameras, including “in the
wild” images from 375 cameras taken from public
Flickr albums. Similarly, we achieve higher accuracies
for the device linking problem in an open set scenario
for a dataset composed of 25,000 pairs images sampled
from the same set used for attribution. Our approach can
be used by investigators to analyze images with di↵erent
resolutions and acquisition circumstances, with good
classification results across all conditions. In addition,
the classification methods we propose are general
enough to also be useful in a diverse set of classification
problems outside of the realm of forensics.

Our contributions in this article, which is an extension
of our recent conference paper [16], can be summarized
as follows:

1. A review of the recent literature on camera
attribution problems in the context of realistic open
set recognition scenarios.

2. A new feature generation approach that addresses
the open set classification problem in digital image
forensics by serving as a projection space for the
class of interest.

2Quintel Intelligence: http://goo.gl/0pRN9

3. Algorithms for image source attribution and device
linking incorporating decision boundary carving –
a new approach for modeling the decision space of
a trained SVM.

4. Large scale open set experimentation incorporating
thousands of unconstrained images from the web,
including an assessment of statistical significance
for all algorithms considered.

2. Related Work

To expand upon what we have touched on above,
the problem of matching an image to the device that
captured it is known in the forensics literature as
image source attribution [4]. There are several features
one can rely on for tackling this problem such as
environment, noise, dust on the lens, hardware and
component imperfections, and e↵ects of operational
conditions. These same features can also be used to
solve the related problem of device linking, where the
objective is to verify whether or not two images come
from the same camera without the need for physical
access to the actual device.

2.1. Image Source Attribution

Recent approaches have explored sensor pattern noise
(SPN) for solving the image source attribution problem.
SPN has drawn special attention from the forensics
community because of its ability to identify a specific
camera and not just the brand/model of the device.
In general, one can consider two types of sensor
noise patterns: Fixed Pattern Noise (FPN) and Photo
Response Non-Uniformity Noise (PRNU).

FPN is caused by dark currents (the result of the
accumulation of electrons in each sensor element of
the device due to thermal action [7]). Normally, it
can be eliminated by some camera models on-the-
fly. The PRNU, on the other hand, is divided into
low-frequency defects noise (LFD) and pixel non-
uniformity noise (PNU). LFD is mainly related to light
refraction on particles near the camera, or by zoom
configurations, and does not make a good candidate
for forensics attribution because of its unstable nature.
Conversely, PNU is more stable because it is caused
by the interaction between the light and each sensor
element of the sensor array, revealing important clues
for forensics.

Lukáš et al. [1] have explored using PNU for the
image source attribution problem. Given a set of images
K generated by a camera C, they calculate the residual
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noise RIj for each image I j 2 K using a discrete wavelet
transform based filter F

RI j = I j � F(I j) (1)

Then, the method calculates a reference pattern SPNc of
the sensor pattern noise of the camera C by averaging
all residual noise in the image set (Eq. 2). The residual
noise is used in this step to reduce the influence of scene
detail.

SPNc =
1
k

kX

i=1

RIi ,where k = |K|. (2)

A correlation value ⇢c is calculated between the residual
noise RJ of an image J under investigation and the SPNc
of a camera

corr = ⇢c(RJ , SPNc) =
(RJ � RJ) · (SPNc � SPNc)
||RJ � RJ || · ||SPNc � SPNc||

,

(3)
where the mean value of the pixels is denoted by the
bar above a symbol. For deciding a match, a threshold
⌧ is calculated using the Neyman-Pearson approach to
minimize the false rejection rate (FRR) while imposing
a bound on the false acceptance rate (FAR). A match
between an image and camera C exists if the value of ⇢c
is higher than ⌧. High accuracy rates were reported by
Lukáš et al. [1] for a test of nine cameras, and the results
were later confirmed by others [17, 18].

Extending Lukáš et al.’s method [1], Li [2] proposed a
sensor pattern noise enhancement method to reduce the
influence of the scene content in the noise component.
Li argues that the high frequencies (e.g., object edges)
in an image directly a↵ect its PRNU component, which
subsequently a↵ects the camera identification results.
In Li’s method, given one image Ip 2 K, after
extracting its noise n = RIp according to Eq. 1, there
is a normalization of each pixel ⌘(x, y), generating the
enhanced noise ⌘e(x, y). Eq. 4 represents the model with
the best results (↵ = 7).

⌘e(x, y) =

8>><
>>:

e�0.5n2(x,y)/↵2
, if 0  n2(x, y);

�e�0.5n2(x,y)/↵2
, otherwise;

(4)

Li reported lower false-positive rates than [1] for a
scenario with six cameras and the center 512 ⇥ 512
region of interest of the image.

In addition to [1] and [2], several other related
methods have been proposed in the literature such
as those based on clustering image sets [19, 20],
or approaches that combine image source attribution
information and color filter interpolation features [21].

To complicate things, there are also counter-forensic
techniques that focus on discovering and exploiting
inconsistencies in camera identification methods to foil
the attribution process [22, 23].

2.2. Device Linking

Parallel to the sensor attribution problem,
Goljan et al. [3] proposed an approach for checking
whether a pair of images was captured by the
same acquisition device without having physical
access to that device. The device linking algorithm
proceeds as follows. Given a pair of images I1
and I2, the PNU component is extracted as in [1]
(Eq. 1) and the images are directly compared by
means of the Normalized Cross-Correlation (NCC)

NCC(u, v) =
P

i, j(RI1 [i, j] � RI1 ) · (RI2 [i + u, j + v] � RI2 )
qP

i, j(RI1 [i, j] � RI1 )2 ·
qP

i, j(RI2 [i, j] � RI2 )2
. (5)

where the bar above a symbol represents the mean.
The algorithm requires that both images be of the

same size for comparison. For this reason, Goljan et al.
recommend padding the images with zeros (when
necessary) before calculating the NCC. Cropping two
regions of the same size around the center of both
images is also plausible [3]. For the decision step,
Goljan et al. explore measures of peak sharpness on
the NCC such as the ratio between the primary and
the secondary peaks (PSR). A PSR that exceeds a
threshold (established to minimize the false positive rate
of misclassifying two images as coming from the same
camera) is an indication that both images were captured
by the same camera.

2.3. Limitations of the Prior Work in Sensor Attribution
and Device Linking for Open Set Problems

Although the approaches [1, 2, 3] we have reviewed
are e↵ective, it is important to understand that they
have some deficiencies. To estimate the threshold ⌧
responsible for matching an image to a camera or for
deciding that two images come from the same camera,
it is assumed that one has images from all possible
cameras, and has subsequently labeled the entire space
in binary fashion as either positive (generated by the
camera under investigation) or negative (otherwise).
More specifically, when creating an algorithm for
deciding whether an image matches its acquisition
camera, one needs to eliminate false matches to other
possible cameras found in the wild that are unknown
during training. This is known as open set classification.
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To highlight the problem with current attribution
methods, consider the following example: suppose that
investigators seize and retain several cameras and hard
disks containing child pornography. In a closed set
camera source attribution analysis for this case, the
investigators would assume that the images come from
one of the seized cameras. However, this assumption
is naı̈ve and would easily lead to unexpected false
matches. Thus, open set attribution is the mode they
should operate in. If we are strict about what an open
set means, we can say that Lukáš et al. [1] and Li [2]
partially dealt with it by defining specific reference
patterns for each image, which aims at ruling out
unknown devices. In this article, we go beyond a simple
characterization of the problem and explicitly deal with
it in the context of a novel machine learning approach.

Although important, the open set recognition
problem has received limited attention in the pattern
recognition literature thus far. For instance, in a study
of face recognition evaluation methods proposed by
Phillips et al. [24], the authors define a threshold ⌧
such that all scores from an algorithm must necessarily
exceed ⌧ to be considered a match. However,
being greater than ⌧ is a necessary but not su�cient
condition for avoiding false matches. Possible unknown
impostors may exist (exceeding the threshold) since
it is impossible to train the system with all possible
impostors. Indeed, nearly all works that we could find in
the literature claiming to address the open set problem
do so by simply setting a threshold.

A more sophisticated “1-vs-Set Machine” algorithm
based on the linear SVM [25] is described by
Scheirer et al. [26]. To improve the overall open set
recognition error, the 1-vs-Set Machine balances the
unknown classes by obtaining a core margin around the
decision boundary from a base SVM, specializing the
resulting half-space by adding another plane and then
generalizing or specializing the two planes to optimize
empirical and open space risk. The process uses the
open set training data and the risk model to define a
new “open set margin”. Our work here can be viewed as
a variation of this approach that considers a non-linear
kernel and moves only a single plane.

In the forensics literature, Wang et al. [27] perform
open set camera model identification using features
based on Color Filter Array (CFA) coe�cients as
proposed in [14, 13]. The authors use a combination
of binary SVM classification approaches: Two-
class SVMs (TC-SVM) and One-class SVMs (OC-
SVM) [28]. More specifically, the OC-SVM may be
considered a solution for open set problems, given that
it is not restricted to a defined sampling of negatives.

The authors use only two out of 17 available cameras
for training (one class of interest and one for outlier
definition, which can be seen as a form of accounting for
the unknown) and all 17 cameras for testing. The work
reported a true positive rate of approximately 91%. Two
limitations of the method are that, considering CFA
coe�cients, one can identify only the brand/model of
the camera that generated an image. Second, one-
class solutions for open set problems tend to generalize
poorly [29].

3. A Methodology for Open Set Camera Attribution
and Device Linking

In this work, we do not assume that an image under
investigation was generated by an available camera. The
key di↵erence from prior work is that for learning,
we assume that we have access to some classes of
interest (suspicious cameras under investigation), but
a vastly undersampled representation of the space of
negative classes (all other cameras in the world) when
calculating the decision boundary from a rich source
of features. Since the space of all negative classes is
beyond our means to quantify, we solve for a more
feasible objective during training. Fig. 2 depicts an
example of this open set classification problem.

Our approaches for open set source camera
attribution and device linking share two core elements:

1. Multi-Region Feature Characterization;
2. Open Set Classification.

3.1. Multi-Region Feature Characterization

Before performing any training or classification, we
need to characterize the images under investigation
and represent them in a form that is more suitable
for computation. The first step is to determine a
region of interest for characterization in each image.
Lukáš et al. [1] proposed the use of the image’s central
region while Li [2] considered the whole image in
some cases. Choosing a common region for all images
(e.g., the central region) may be better for image source
camera attribution and device linking when we have
images with di↵erent resolutions.

However, according to Li and Satta [30], di↵erent
regions of the image can contain di↵erent information
with respect to the acquisition process. Therefore, our
method considers multiple regions of one image instead
of just the central one. We calculate nine 512⇥512-pixel
regions of interest (ROIs), as shown on the lefthand side
of Fig. 3. Regions in the center of the image (1-5)
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Figure 2: An example of open set classification. The above diagram
shows a known class of interest (“orange”), surrounded by other
classes that are not of interest, which can be known (“blue,” “gray,”
“green”), or unknown (“?”). The “orange” class may refer to images
of a suspicious camera under investigation and the “blue,” “gray” and
“green” classes may refer to images of three other known cameras.
Since this is an open scenario, we can only use the information
about the four known cameras for calculating a decision threshold.
However, the real world is more complex, and there are countless
cameras that cannot be considered as part of the negative class in
training. Any algorithm used operationally must address this aspect
of “unknowns” in the problem.

assume coincidence with the principal axis of the lens
and are expected to have a great deal of scene detail,
as amateur photographers usually focus the object of
interest in the center of the lens. Peripheral regions (6-
9) are also important because some cameras su↵er from
vignetting, which is a radial fallo↵ of intensity from the
center of the image, causing a reduction of an image’s
brightness or saturation at the periphery [30, 31]. These
are interesting and useful properties for attribution and
linking analysis.

Di↵erent from Lukáš et al. [1], who have considered
only gray-scale images when calculating the PNU for
camera attribution, we calculate the PNU (as defined in
Eqs. 1 and 2) for each region of interest by considering
the color channels R (red), G (green), and B (blue), as
well as the Y channel (luminance, from YCbCr color
space), which is a combination of the R, G and B
channels (a gray-scale version of the image) [32]. We
end up with 36 reference noise patterns to represent
each camera, giving us a larger space of information
to consider during learning. The regions and color
spaces can be thought of as a projection space for
the class of interest, emphasizing its properties. This
is essential for reaching the levels of discriminability
required for open set scenarios where any number of
unknown images can be encountered. Further, this type

of region characterization allows us to compare images
with di↵erent resolutions without color interpolation
artifacts, and it is not necessary to do zero-padding,
for instance, when comparing images of di↵erent sizes.
The feature vector representing an image is created by
calculating the correlation between each ROI of the
image and the corresponding noise pattern for each
camera, according to Eq. 3. The final result is a 36-
dimensional feature vector. Fig. 3 depicts this process.

For device linking, we collect feature vectors from
the positive class of interest and from the known
negative classes. In this case, a positive class of interest
consists of actual examples of pairs of images coming
from the same camera. A negative class consists of
examples of pairs of images coming from di↵erent
cameras. Since we do not have access to any physical
device, we need to check if two images originate from
the same camera based solely on their content and
properties. We extract a feature vector for a pair of
images using a 2-D correlation function (Eq. 6) between
the correlated noises of each ROI (c.f., Section 3.1) for
a given pair of images I1 and I2.

corr =
P

i, j(RI1 [i, j] � RI1 ) · (RI2 [i, j] � RI2 )
qP

i, j(RI1 [i, j] � RI1 )2 ·
qP

i, j(RI2 [i, j] � RI2 )2
. (6)

We considered the color channels R, G, and B in this
task because experiments showed that using Y did not
provide significant improvement for device linking.
Thus, we end up with 27 features in total.

3.2. Open Set Classification

Open set recognition is more than just setting a
decision threshold [1, 2, 3]. Our approach begins by
learning a classifier from the training set consisting of
the positive samples and the available negative samples.
Given training data (xi, yi) for i = 1 . . .N, with xi 2 <d

and yi 2 {�1, 1}, a classifier f is learned such that

f (xi) =

8>><
>>:
� 0, yi = +1
< 0, yi = �1.

(7)

Let X be a training data matrix in which the ith row
of X denotes the row vector xi. Consider that the
positive training class consists of feature vectors P =
{x+1 , x+2 , . . . x+n+ } and the negative class (which in itself
can contain multiple negative classes) consists of N =
{x�1 , x�2 , . . . x�n� } where N = n+ + n� is the total number
of training examples.

We can find a maximum margin separation
hyperplane ~w · x+ b = 0 (linear case) or ~w · �(x)+ b = 0
(non-linear case) by means of the classical support
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Figure 3: Feature generation takes advantage of multiple image regions, giving us a rich pool of data to consider when learning classifiers that
perform well in open set scenarios. For source camera attribution (shown above), we calculate the residual noise for each ROI considering the R, G,
B and Y color channels. Next, we generate the feature vector with respect to the correlation between the noise in each ROI and the corresponding
noise pattern for each camera. Performing this for all ROIs for one camera, we have 36 features for each image. Device linking proceeds much the
same way, except that pairs of images are considered, and we only analyze the R, G, and B color channels, giving us 27 features for each image.

vector machine classification algorithm [33, 25]. The
objective of SVM is to find a classifier that is able to
separate the data points from P and N , where ~w is the
normal to the hyperplane, b is the bias of the hyperplane
such that |b|/||~w|| is the perpendicular distance from the
origin to the hyperplane, and � is a mapping function
from original feature space to a higher dimensional
space by means of the kernel trick [33]. After finding a
maximum margin separation hyperplane (the solution
f ) from the training data points X, we have a situation
where we have one class of interest as the positive
data (e.g., consisting of data points from a suspicious
camera) and one or more classes as the negative data
(e.g., consisting of data points from other known
cameras). According to this model, each data point
xi during training is at a distance di to the decision
boundary given the SVM solution and can be classified
as class +1 if ~w · xi + b � 0 or as �1, otherwise.

SVM uses structural risk minimization3 [33],
allowing it to minimize the risk of misclassification
based only on what it knows from the training data.

3Structural risk minimization refers to the inductive principle
for model selection used for learning from finite training data sets
and solving the problem of finding the maximum margin separation
hyperplane.

In the open set case, however, many more classes can
appear that are part of the overall negative class (e.g.,
other cameras in the world), which could adversely
a↵ect the operation of the classifier during testing.
Therefore, given the sensor attribution or device linking
classification problem, our objective in the open set
scenario is to minimize the risk of the unknown by
maximizing the training classification accuracy while
minimizing the false positive rate (false matches of
other cameras to the camera of interest). We achieve
that by solving the following optimization problem:

min
 

1
A(X)

!
, (8)

where A(X) is the normalized training accuracy given
by

A(X) =
1
2

0
BBBBBBB@

P(n+)
i=1 ✓(x

+
i )

n+
+

P(n�)
j=1 !(x�j )

n�

1
CCCCCCCA (9)

such that

✓(x+i ) =

8>><
>>:

1, if f (x+i ) � "
0, otherwise;

(10)

!(x�j ) =

8>><
>>:

1, if f (x�j ) < "
0, otherwise.

(11)
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In summary, Eq. 9 means that we analyze the
classification values of all training samples to find the
classification accuracy A(X).

With the calculated hyperplane in the initial training
step, which represents the best SVM can do based
on what it knows during training time, we move the
decision hyperplane by a value " inwards towards
the positive class or outwards in the direction of
the negative known class(es) in order to account for
unknown classes and to minimize future false positive
matches. By changing the hyperplane position, we
can be more strict about what we know to be positive
examples and therefore classify any other data point that
is “too di↵erent” as negative, or we can be less strict
about what we know with respect to the positive class
and accept more distant data points as possible positive
ones.

We consider " to move in the interval given by
the most positive example (farthest from the decision
hyperplane in the positive direction) and the most
negative example (farthest from the decision hyperplane
in the negative direction). For simplification, we might
constrain the interval, as we do in this paper, to be
tighter such as 2 [�1, 1], so as not to drastically change
the initial hyperplane found by the SVM. The " value
represents a movement on the decision hyperplane ~w ·
x + b + " = 0 (the linear case) or ~w · �(x) + b + " = 0
(the non-linear case considered herein). We loosely
call this process Decision Boundary Carving (DBC).
An exhaustive search to minimize the training data error
defines the value of ", which we accomplish by solving
Eq. 8. Given any data point z for testing, it is classified
as a positive example if f (z) � ". Fig. 4 depicts the DBC
process and Appendix A outlines a high-level algorithm
for DBC.

3.3. Open Set Camera Attribution and Device Linking

We can train a classifier for the open set camera
attribution problem in a straightforward manner from
the methodology just defined. The steps are: (1)
collecting feature vectors according to Sec. 3.1 from
the positive class of interest and from the known
negative classes; (2) training a classifier; and (3) finally
performing decision boundary carving for finding the
most suitable position for the decision hyperplane
according to Section 3.2. For solving the device linking
problem while accounting for its open set nature, all
we need to do is adapt the feature extraction procedure
as explained in Section 3.1. Similar to the camera
attribution problem, the final step consists of training
a two-class SVM classifier and moving the decision

hyperplane via DBC so as to avoid/diminish false
matches.

4. Experiments and Results

In this section, we present the experiments performed
to validate the proposed method as well as to compare
it with state-of-the-art solutions considering the image
source attribution and device linking problems. We
divide the experiments into two partitions according to
the problems of interest.

4.1. Data sets and experimental protocol

We consider a master data pool of 13,210 unique
images coming from 400 di↵erent digital cameras,
with a large portion of the images consisting of
unconstrained photos we downloaded from the web. As
camera attribution and device linking are conceptually
di↵erent, we organized this set of images into two
datasets4:

• Dataset A consists of 13,210 images from 400
di↵erent cameras. We have physical access to
25 of the cameras and the other 375 cameras
are represented by images collected in the wild
(Flickr) to simulate what happens in a real world
investigation when seizing devices and images.
We further organize Dataset A into datasets A25
and AF. A25 includes images whose source is
within the set of 25 cameras we have physical
access to. AF includes images from Flickr and
represents a large number of source cameras.
Table 1 provides a comprehensive listing of camera
details for the A25 dataset5. A25 contains 4,411
images with an average of 150 images per camera,
while AF contains 8,799 images in total with a
varied number of images per camera (reflecting the
unconstrained acquisition).

In the camera attribution experiments, we analyze
a scenario in which a “search, seize, and capture”
has occurred and a set of cameras and suspicious
images were apprehended. The question is then
to check whether any of the images come from
any of the cameras or from another device not in
the apprehended set of cameras. This is an open

4All the feature vectors for both datasets as well as the list of used
images will be freely available upon acceptance at http://www.ic.
unicamp.br/

~

rocha/pub/communications

5The list of all cameras from Flickr is included as supplementary
material.
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(a) (b)

Figure 4: Source camera attribution and device linking using Decision Boundary Carving (DBC). (a) Calculated separation hyperplane, considering
the orange and green data points as the known positive and known negative classes, respectively, and the white data points as the unknown classes.
The bluish region represents the distance between the margins of the positive and negative support vectors. (b) DBC over the calculated hyperplane,
represented by the gray region. The process of carving the decision boundary seeks to minimize the risk of the unknown by minimizing the data
error, which is implemented as the normalized accuracy during training

⇣
1

A(X)

⌘
.

Table 1: Cameras used for all experiments. Images or matched pairs / non-matched pairs of images from cameras 1–15 are the only ones that can be
used for training in both the camera attribution and device linking problems. Images or matched pairs / non-matched pairs of images from cameras
16-25 and from cameras in Flickr are always used for testing, and represent the “open set”.

Camera Native Resolution Camera Native Resolution
1 Canon PowerShot SX1-LS 3840 ⇥ 2160 14 Nikon D40 3008 ⇥ 2000
2 Kodak EasyShare c743 3072 ⇥ 2304 15 Olympus SP570UZ 3968 ⇥ 2976
3 Sony Cybershot DSC-H55 4320 ⇥ 3240 16 Panasonic Lumix DMC-FZ35 4000 ⇥ 3000
4 Sony Cybershot DSC-S730 2592 ⇥ 1944 17 Sony Alpha DSLRA 500L 4272 ⇥ 2848
5 Sony Cybershot DSC-W50 2816 ⇥ 2112 18 Olympus Camedia D395 2048 ⇥ 1536
6 Sony Cybershot DSC-W125 3072 ⇥ 2304 19 Sony Cybershot DSC-W120 3072 ⇥ 2304
7 Samsung Omnia 2560 ⇥ 1920 20 Nikon Coolpix S8100 4000 ⇥ 3000
8 Apple iPhone 4 (1) 2592 ⇥ 1936 21 Sony Cybershot DSC-W330 4320 ⇥ 3240
9 Kodak EasyShare M340 3664 ⇥ 2748 22 Apple iPhone 4 (2) 2592 ⇥ 1936
10 Sony Cybershot DSC-H20 3648 ⇥ 2736 23 Canon Powershot A520 1600 ⇥ 1200
11 HP PhotoSmart R727 2048 ⇥ 2144 24 Apple iPhone 3 1600 ⇥ 1200
12 Canon EOS 50d 4752 ⇥ 3168 25 Samsung Star 2048 ⇥ 1536
13 Kodak EasyShare Z981 4288 ⇥ 3216 Flickr 375 di↵erent cameras (brands and models) Various Resolutions

set attribution problem because the apprehended
images may or may not have come from one of
the apprehended cameras. However, any solution
dealing with such problem needs to be trained
using only the apprehended cameras.

For that, we analyze the open set image source
attribution problem considering access to sets of
15, 10, 5 and 2 suspect cameras from the A25 set.
However, we emphasize that in testing, the images
can be generated by any of the cameras represented
in A25 and AF. For a better analysis of the training
variation, we divide the images from cameras 1-
15 from A25 into five groups and perform a 5-
fold cross validation during training. The cross-

validation for set A25 is intended to analyze how
the classifier learning and the decision boundary
calculation is a↵ected by variation in the training
sets. In each round of the cross-validation, we train
the algorithms with four folds and use the fifth one
for testing. In addition, the testing set is always
complemented by images from cameras 16–25 in
A25 as well as by images from all cameras in AF.
During training, we never have access to cameras
16–25, nor the cameras that generated the images
in AF.

• Dataset L consists of 25,000 pairs of images from
two cameras with both in A25, or one camera in
A25 and another in AF. We consider 5,000 matched
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pairs and 5,000 non-matched pairs from cameras 1-
15 in A25 (Set L1), 5,000 matched-pairs and 5,000
non-matched pairs from cameras 16-25 in A25 (Set
L2), and 5,000 non-matched pairs from one camera
in the set of cameras 16-25 from A25 and another
camera in AF (Set L3). The algorithms are always
trained with half of the matched pairs and non-
matched pairs in L1 and tested with the other half
of L1 and all pairs of images in L2 and L3. The
process is repeated once, switching the training
half. The L2 and L3 testing represent the open set
validation partition, since the matched-pairs and
non-matched pairs of images therein come from
cameras never used during the training phase of the
algorithms.

For SVM classification in all experiments, we use the
LibSVM library [34]. We consider only the non-linear
case herein with a radial basis function kernel (RBF):

RBF(x+i , x
�
j ) = exp (�� · |x+i � x�j |

2) (12)

We find the best separation hyperplane during training
through a grid search by changing the RBF kernel
parameter � (that represents the boundary smoothness
between positive and negative samples) and the cost of
misclassification, considering just the known samples
(positive and known negative classes at training).

4.2. Image source attribution
To measure the e↵ectiveness of the image source

attribution analysis, we calculate the accuracy (in %)
for each camera considering the relative classification
accuracy AccR according to

AccR =
Acc+ + Acc�

2
, (13)

which is the average of the percentage of correct
classifications during testing for positive (Acc+) and
negative (Acc�) images for a given camera. The average
accuracy AccM for each camera is calculated as

AccM =
1
z

zX

i=1

Acci
R, (14)

where z = 5 divisions of the 5-fold cross-validation
protocol used for training with the A25 set. The
results we report correspond to the final accuracy AccF ,
calculated as the average over all cameras

AccF =
1

NC

NCX

i=1

Acci
M , (15)

where NC is the number of available cameras during
training.

When we consider access to cameras 1–15, it means
we train with cameras 1–15 as suspect cameras but the
images under investigation can come from any of the 25
cameras in A25 as well as from any of the 375 cameras
in AF. For the case with 10 known cameras during
training, we performed two experiments (access to
cameras 1–10 and separately access to cameras 6–15).
For the experiments with five cameras, we considered
three di↵erent combinations of five cameras (1–5, 6–
10, 11–15). For the experiments with two available
cameras, we considered seven di↵erent combinations
(1–2, 3–4, and so forth).

We validate the proposed method in four ways. We
refer to our approach considering only ROI #1 (see
Fig. 3) as T1, with ROI #1 plus the open set decision
boundary carving (DBC) solution as T2, our approach
considering all ROIs without DBC as T3, and the
complete solution with all regions plus DBC as T4. For
each case, the result is the average of the results for
tests considering each combination of cameras. Table 2
shows the comparison of the proposed methods to
Lukáš et al.’s [1] and Li’s [2] approaches in an open set
scenario.

Table 2: Results (AccF±�, in percentage) for 15, 10, 5, and 2 available
cameras during training. An open set with 15 out of 400 cameras
consists of training on 15 cameras but testing on images from any of
the cameras already seen in training and also from either any of the
cameras in the set 16-25 never used in training or any camera in AF
(the wild). The number of testing examples change for each scenario.
For instance, for each positive testing camera (cameras 1-15 in A25),
there are 1⇥30 positives and 14⇥30 negatives from the known classes,
10⇥30 negatives from cameras 16-25 in A25 and 8,799 negatives from
AF, for a total of 30 positives and 9,519 negatives. Best results are
highlighted in bold.

Open Set Cameras – Results in %
15 10 5 2

LUKAS ET AL. [1] 95.08 94.70 95.04 94.46
± 2.40 ± 2.46 ± 2.34 ± 2.69

LI. [2] 94.62 94.06 94.50 93.23
± 2.56 ± 2.67 ± 2.49 ± 2.84

TC-SVM – T1 90.95 91.17 93.65 94.29
Only central ROI ± 3.14 ± 2.62 ± 2.63 ± 2.81
TC-SVM – T2 95.95 95.35 95.84 94.89
Central ROI + DBC ± 1.70 ± 1.95 ± 1.63 ± 2.01
TC-SVM – T3 95.75 95.69 96.88 96.56
All ROIs without DBC ± 1.64 ± 1.83 ± 1.48 ± 1.65
TC-SVM – T4 97.18 96.80 97.34 96.49
All ROIs + DBC ± 1.63 ± 1.63 ± 1.16 ± 1.60

Specifically, for the case with 15 known suspect
cameras during training and 400 cameras in testing, we
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can see that the open set feature characterization (T3)
with no decision boundary carving slightly improves
the classification accuracy when compared to the best
baseline (Lukáš et al. [1]). T3 reduces the classification
error by 13%6. When we add the decision boundary
carving to further deal with the open set nature of
the problem, the classification error is reduced by
42.7%. These results show that it is possible to reliably
identify image sources in an open set scenario even with
hundreds of unknown cameras.

The results also indicate that the DBC
implementation does not help in the case of only
two suspect cameras when considering all ROIs.
However, we still see the improvement in results when
we consider more ROIs for the identification, which
makes the case for the open set feature treatment we
devised in Section 3.1. The approach proposed by
Li [2] does not statistically improve the classification
results of Lukáš et al. [1] (considering the dataset and
the open set evaluation scenario used in this work).
We used the Wilcoxon Sign Rank [35] at the 99%
confidence interval for statistical significance tests.
Any statistical di↵erence between the methods devised
by Lukáš et al. [1], Li [2] and our approaches (T3 and
T4) is shown in Table 3.

Table 4 contains a breakdown for the case with known
cameras 1–15 for training and 400 for testing (385
unknown). It shows the true positive rate, as well as
the true negative rate with results in X% ± � (standard
deviation), as well as the raw numbers considering
the average of a 5-fold cross validation protocol.
Observe that the proposed method demonstrates higher
performance than the approaches of Lukáš et al. [1] and
Li [2]: we reduce the risk of the unknown considerably.
This is reflected in the high number of true negatives
(and consequently low false positives) with a very low
standard deviation and an increase in the true positives.

4.3. Device linking
For device linking, we present the proposed methods

without DBC (T3) and with DBC (T4) and compare
them to the state-of-the-art method proposed by
Goljan et al. [3] (Goljan Baseline). We also compared
our methods to an extension of Goljan et al. [3] (Goljan
ML Extended) in order to place it on a common machine

6The error reduction is calculated by dividing the error of
the proposed method by the error of the baseline and taking the
complement. For instance, suppose a proposed method A has an error
of 10% and the baseline has an error of 50%. In this case, we can say
A reduced the classification error compared to B by: 1 � (0.1/0.5) =
80%.

Table 4: Breakdown for the Open Set setup with cameras 1–15 from
A25 for training and 400 cameras for testing from A25 and AF.

Lukáš et al. [1] Li [2] TC-SVM + DBC – T4
TP 92.59% ± 5.15 91.62% ± 5.70 95.81% ± 3.46

(27.77 / 30) (27.48 / 30) (28.74 / 30)
TN 97.56% ± 1.77 97.62% ± 1.55 98.54% ± 0.53

(9,277 / 9,519) (9,283 / 9,519) (9,370 / 9,519)

learning basis with our approach. We carried out the
experiments considering the original and the enhanced
residual noise [2] of the images.

The baseline proposed by [3] essentially fails in this
open set validation scenario. Regarding this method,
a region of size 512 ⇥ 512 pixels around the center
of each image was considered following the original
paper. We carried out two experiments in this case:
in the first experiment, we examined how e↵ective the
threshold found by the authors was for the dataset used
herein. In the second experiment, we calculated the best
threshold considering the PSR values for our training
set (images from the L1 set in dataset L), and assessed
that value using our test set (containing images from
L1, L2 and L3). We found accuracies of only about
50%. A possible reason for such results is that the
authors perform zero-padding aiming at matching the
resolution of the images, and we just considered the
central region of the images. As the images have
di↵erent native resolutions in our dataset we could not
strictly reproduce their validation scenario. Therefore,
we extended their method to automatically find the
threshold using the same classifier we use in this article:
SVM. For that, the classifier is given a 3-d feature vector
composed of the result of the correlation values between
the pair of images for each color channel as input. The
performance improvement is remarkable: going from
the original chance baseline to 75.6% (see Goljan ML
Extended method in Table 5).

Nonetheless, the proposed methods T3 and T4 yield
an average accuracy of 87.4% for correctly classifying
a random image pair as generated or not by the
same camera. This is an improvement of 11.7% and
represents a reduction of 52% in the classification error.
A Wilcoxon Sign Rank test [35] at the 99% confidence
interval shows that the Goljan ML Extended method is
statistically better than the baseline, but both methods
are statistically worse than T3 and T4. In addition,
we can see that T3 and T4 are very similar, which
means that the multi-region feature characterization was
enough for open set device linking – the DBC procedure
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Table 3: Significance tests between our solutions and the ones proposed by Lukáš et al. [1] and Li. [2]. A ‘•’ means statistically significant
di↵erences.

Lukáš et al. [1] Li [2] TC-SVM - T3 TC-SVM + DBC - T4
Approach \ Number of Cameras 15 10 5 2 15 10 5 2 15 10 5 2 15 10 5 2

Lukáš et al. [1] – – – – • • • • • • • • • •
Li [2] • • – – – – • • • • • • • •

TC-SVM - T3 • • • • • • • • – – – – • • • •
TC-SVM + DBC - T4 • • • • • • • • • • • • – – – –

Table 5: Summary results for device linking obtained with a 2-fold
cross-validation protocol.

Exp. ID Info. Used Acc. Std.Dev.
Goljan Baseline [3] Original PRNU 51% 2.63
Goljan Baseline [3] Enhanced PRNU 51.1% 2.14
Goljan ML Extended Original PRNU 76.3 0.98
Goljan ML Extended Enhanced PRNU 75.6% 0.97
Proposed T3 Original PRNU 86.7 0.81
Proposed T3 Enhanced PRNU 87.4% 1.62
Proposed T4 Original PRNU 86.5 1.31
Proposed T4 Enhanced PRNU 87.4% 2.51

does not play a major role here. Table 5 summarizes the
results of all methods.

5. Discussion

Understanding the image source attribution problem
in an open set context is an important step towards
solving a real world problem. It is not di�cult
to imagine a situation where an investigator needs
to answer the question of whether an apprehended
photograph belongs to one out of a possible set of
known cameras or to some other unknown camera. Just
as important as open set camera attribution, the open
set device linking problem presents the investigator with
the task of determining if two images were generated by
the same camera. Our results for both problems were
encouraging, with remarkable reductions in error rates
despite the presence of a large open set of unconstrained
images from the wild. However, the method we propose
is just a first contribution towards a comprehensive
solution to this very challenging and poorly understood
general problem of open set classification.

As with almost any work, ours can certainly be
improved upon. We can extend this research to help
combat counter-forensic approaches, as discussed by
Goljan et al. [36] and Gloe et al. [22]. The application
of the core idea of the proposed feature characterization
technique, which is tailored to expanding the amount
of information available to define a projection space

for a unique class of interest, as well as the principles
of the decision boundary carving technique, to other
pattern recognition and computer vision problems looks
promising.

Finally, it is important to bear in mind that the
solutions presented herein are applicable to myriad
pattern recognition and vision problems operating in the
open set mode. According to Duin and Pekalska [37],
the way we approach a problem that contains classes
that are ill-sampled, not sampled at all, or are undefined
is definitely an open issue. Therefore, we envision
our open set solutions will represent possible starting
points for approaches to other problems such as face
recognition and verification, object recognition and
image categorization – all longstanding areas of prime
importance in pattern recognition and computer vision.

Acknowledgments

We acknowledge the financial support of FAPESP
(Grant #2010/05647-4) CNPq (Grant #304352/2012-
8), Microsoft and Samsung. Part of the results
presented in this paper were obtained through the
project “Unicamp/Samsung”, sponsored by Samsung
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Appendix A. Decision Boundary Carving Algo-
rithm

Algorithm 1 shows the pseudo-code for the decision
boundary carving process described in this paper. The
refinement process in which we further separate the
training data into the actual training set (for finding the
SVM parameters ~w and b) and validation set (for opti-
mizing the open set threshold ") is not shown for the
purpose of simplicity.
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Algorithm 1 Decision Boundary Carving (DBC)
1: Input: P,N . Set

of elements of the positive class of interest and the
known negative class(es), respectively

2: Output: Decision hyperplane parameters ~w and b,
and the open set threshold "

3:
4: (~w, b) SVM-Training(P, N); . Calculating the

SVM hyperplane parameters
5: C Classification(~w,b, P, N); . Obtaining the

decision scores
6: min lowest-decision-score(C);
7: max highest-decision-score(C);
8: D +1 . Setting the initial data error to a

maximum value
9: For "0  min to max do . "0 spans possible scores

in C (increments of 10�4 herein)
10: (A+, A�) 0
11: For all x+ 2 P do
12: A+  A+ + ✓(x+, "0); . True positives for this

particular position of the hyperplane (Eq. 10)
13: End For
14: For All x� 2 K do
15: A�  A� + !(x�, "0); . True negatives for

this particular position of the hyperplane (Eq. 11)
16: End For
17: AX  1

2

⇣
A+
|P| ,

A�
|N|

⌘
; . Normalized averaged

accuracy (Eq. 9)
18: D0  1

AX
;

19: If D0 < D then
20: D D0;
21: " "0;
22: End If
23: End For
24: Return (~w, b, ")
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