
© 2006 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Pre-print of article that appeared at the 2nd International Workshop on Security in
Systems and Networks 2006.

The published article can be accessed from:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1639678

Network Intrusion Detection with Semantics-Aware Capability

Walter Scheirer and Mooi Choo Chuah

Lehigh University
Dept. of Computer Science and Engineering

Bethlehem, PA 18015 USA
{wjs3, chuah}@cse.lehigh.edu

Abstract

Malicious network traffic, including widespread worm

activity, is a growing threat to Internet-connected

networks and hosts. In this paper, we propose a

network intrusion detection system (NIDS) with

semantics-aware capability. Our NIDS segregates

suspicious traffic from the regular traffic flow, extracts

binary code from the suspicious traffic, and performs

semantic analysis on it to identify potential threats. Our

contributions in this work are threefold: (a) we believe

our prototype is the first NIDS that provides semantics-

aware capability, (b) our implementation is more

efficient than what is reported in [5], (c) our designed

templates can capture polymorphic shellcodes with

added sequences of stack and mathematic operations.

1. Introduction

 In recent years, computer intrusion has been on
the rise. The popularity of the Internet and the

widespread use of homogeneous software provide an

ideal climate for infectious programs. The cost of

viruses and worms in 2002 was estimated to be 45

billion dollars [1]. In 2003, this number jumped to 55

billion dollars [1]. Much money has to be spent on

researching techniques that can fend off intrusion

attempts such that computer systems can operate

effectively. A popular technology called the Intrusion

Detection System (IDS) has emerged to identify and

block intrusion attempts. Popular network IDS (NIDS)

systems such as Snort [2] and Bro [3] utilize a signature-
based approach to detect malicious network traffic. In

these systems, static signatures of known attacks are

used to identify attack packets. A major drawback of

this approach is that unknown attacks cannot

be detected – the ones, which conceivably will cause the

most damage.

 Typically, new attacks are detected in an ad hoc

fashion through a combination of intrusion detection

systems alerting potential attacks, and skilled security

personnel manually analyzing traffic to generate attack

characterization. Such an approach is clearly not

sufficient since it may take hours to generate a new

worm signature. In recent studies [4], the authors

suggest that if the attack traffic is indicative of a worm

outbreak, effective containment may require a reaction

time of well under sixty seconds. Thus, new techniques

that can help to identify threats from unseen worms or
exploit packets need to be devised.

 In this paper, we describe a prototype system

with semantics-aware capability that we have built to

automatically identify threats from some unknown

malicious network traffic. This work is an extension of

the approach presented in [5]. The semantics-aware

malware detection algorithm of [5] is an extremely

powerful tool for program profiling. Based on the

observation that certain malicious behaviors appear in

all variants of a certain kind of malware, the authors

propose using template-based matching to detect

malware. Their approach looks for a match of program
behaviors rather than program syntax matching. In this

manner, polymorphic and metamorphic code instances

can be identified right along with their static

counterparts. However, in [5], the authors only perform

experiments on a non-networked host with standalone

virus samples as well as evaluating their templates

against a set of benign programs. As most threats to

end-systems now emanate from the Internet, much in

the form of self-propagating network code, network

enabled detection is critical. Thus, in this work, we

have built a full-featured network intrusion detection
system with semantic-aware capability that can detect

not only viruses, but remote exploits, including worm

traffic. Through rigorous testing, we show that

semantic detection is an extremely powerful tool for

identifying static and polymorphic network exploits.

Our system can perform more efficiently than the

system presented in [5].

 The rest of the paper is organized as follows: In

Section 2, we describe some related work and discuss

how one particular work motivates this research. In

Section 3, we describe the motivation for the semantic
analysis of malicious code, and discuss how binary

exploits work. In Section 4, we present the system

architecture of the NIDS we have built and describe in

detail how different stages of the system work. We

describe our experiments and the results we obtained in

Section 5. Finally, we summarize our findings and

discuss some future work that we intend to explore in

Section 6.

2. Related Work

 Much research has been devoted to intrusion

detection in recent years. Two enormously popular

open source tools, Snort [2] and Bro [3], have shown
that static signature based IDSs can be quite successful

in the face of known attacks. Combined with automatic

monitoring and incident response, system

administrators have a powerful tool against network

attacks. In [13], the authors present the case for

collaborative intrusion detection system where

intrusion detection nodes cooperate to determine if a

network attack is taking place and take corrective

actions if it does. Others have sought to use statistical

approaches to detect worm outbreaks. In [10], the

authors propose a method to identify a worm victim by
observing if the number of scans per second it performs

exceeds a certain threshold. The numbers of worm

victims observed in successive windows are then

compared to the numbers predicted using a typical

worm spread model and if they match, then a worm

outbreak is declared.

 In [7], [8], the authors show that byte-level

analysis of packet payloads can yield useful signatures

for worm detection. The premise being some portions

of the worm code will be invariant. At first glance,

these approaches looked promising, however, in
practice, they generate far too many signatures, with a

sometimes-undesirable accuracy rate. A recent paper

[12] also addresses the polymorphic worm detection

problem in a similar manner. They advocate using

disjoint data signatures. With [14], we begin to see a

research trend towards using semantics knowledge for

potential worm detection. Here, the authors observe

that invariant byte positions may be disjoint (a result of

advanced polymorphic techniques), but will be present

nonetheless as they are integral to functionality. With

[5] and [6], the application of semantics is introduced.

Non-binary attacks, such as URL based web server
exploits, are analyzed and clustered in a data-mining

scheme in [6]. In this work, we built upon the approach

described in [5]. Our contributions are three fold: (a)

our prototype is a complete NIDS that provides

semantic aware capability, (b) our implementation is

more efficient than what is reported in [5], (c) our

designed templates can capture polymorphic shellcodes
with added sequences of stack and mathematic

operations.

3. Semantics-Aware Malware Detection

Methodology

 Current IDSs often use static signatures.

However, new malware or worms that have appeared

recently indicate that the authors of such malicious

code often use code obfuscation to evade IDSs that use

static signatures. There are two forms of code

obfuscation: polymorphism and metamorphism.

Traditional polymorphism has taken the form of an
encrypted body of code with an attached (and often

obfuscated) decryption routine. The encryption

technique used is good enough to fool pattern-matching

IDSs. Metamorphic code relies on the obfuscation of

the entire code base, including code transposition,

equivalent instruction substitution, jump insertion,

NOP insertion, garbage instruction insertion, and

register reassignment. Figure 1 shows a simple

decryption routine and two obfuscated variants of that

same decryption routine. The decryption routine shown

in Figure 1(a) consists of a loop that performs an xor of
a memory location against a static key, followed by an

increment of the memory address to the next location.

Figure 1(b) makes several changes to the code in

Figure 1(a), including obscuring the key by adding mov

and add instructions that work with a register. The inc

instruction is also substituted with an add instruction.

 Figure 1. Three equivalent code routines.

decode:
 xor byte ptr [eax], 95h
 inc eax
 loop decode

 (a) Simple xor based decryption routine

decode:

 mov ebx, 31h

 add ebx, 64h
 xor byte ptr [eax], ebx
 add eax, 1
 loop decode

 (b) 2nd instance of xor decryption routine

decode:

 mov ecx, 0

 inc ecx

 inc ecx

 jmp one

 two: add eax, 1

 jmp three

 one: mov ebx, 31h

 add ebx, 64h
 xor byte ptr [eax], ebx
 jmp two

 three: loop decode

 (c) obfuscated instance of xor decryption

These seemingly minor changes are good

enough to fool a pattern matching IDS. Figure 1(c)

improves on 1(b) by adding garbage instructions, and

changing the code order while preserving the execution

sequence with jmp instructions. One can think of a

plethora of equivalent programs – thus, we must rely
on the meaning of the code, and not its syntax, for

reliable detection.

 The authors of [5] reduce the problem of

semantic equivalency to a template matching problem.

In essence, if we can create a template describing the

expected behavior of a piece of code, we can match it

to an actual code routine to see if the tested code

exhibits the same behavior. Stated formally in [5], “A

program P satisfies a template T (denoted as P = T) iff

P contains an instruction sequence I such that I

contains a behavior specified by T.” A template will

consist of a sequence of instructions, along with its

associated variables and symbolic constants.

Figure 2. A template and matching assembly

code segment.

 In Figure 2, we show an instance of a template

on the left, and a matched assembly code segment on
the right. The template shown is designed to match the

decryption routine described in Figure 1. Each template

is simply a description of the behavior we expect from

a known routine – not the exact syntax that will show

up in a code fragment. By looking at the assembly code

segment on the right, we see that the code segment

does not have a one-to-one correspondence with the

template but the behavior defined by the template is

present in the code routine. Thus, we can construct an

algorithm to locate patterns defined in templates in real

assembly code segments.

 While [5] formalizes the template matching
problem rather nicely, it presents a somewhat limited

engineering approach to intrusion detection. The

system that the authors built currently assumes that

malware samples are available as inputs to their

system. In order for the semantics-aware approach to

be useful in a NIDS, a classifier needs to be provided

so that semantic analysis is only performed on a small

percentage of suspicious traffic. In addition, we believe

that false positives are bound to emerge unless a good

classifier is provided. For example, during the course

of this research, we identified several legitimate
programs (Crypkey [18], ASProtect [19]) that obscure

binaries with simple encryption routines as a form of

copy protection. Locating a decryption loop (the

primary test in [5]) within a program protected by one

of these applications will signal a false alert. As copy

protection schemes begin to incorporate methods

reminiscent of code circulating in the computer

underground, we expect the false positive rate of the

detection scheme based on purely checking installed

binary programs on an end-host as described in [5] to

grow accordingly. However, it is highly unlikely for

copy protected program to be embedded in a web
request sent by a scanning source, thus, one can easily

differentiate between the two scenarios using a smart

traffic classifier. Thus, we incorporate (a) a traffic

classifier, and (b) a binary data identification and

extraction module in our prototype. The combination of

these features, and the semantic analysis allow the

NIDS system we have built to be more effective than

other NIDSs that are based on syntactic pattern

matching approaches. In addition, our NIDS is more

efficient than that reported in [5].

 4. NIDS with Semantic-Aware Capability

Figure 3. The semantic-aware NIDS

architecture.

In this work, we develop a full NIDS that

segregates suspicious traffic from regular traffic flow,

extracts binary data from suspicious traffic and

performs semantic analysis on the binary data in order
to identify potential threats. Such a NIDS does not rely

on fingerprints or other syntax based methods. Figure 3

shows the system architecture of our NIDS. It consists

of five major components, namely (a) traffic classifier,

(b) binary data identification and extraction module, (c)

disassembler, (d) intermediate representation generator,

(e) semantic analyzer. This NIDS can be deployed on a

standalone machine connected to the network.

4.1. Traffic Classification

 Traffic classification is necessary to determine

which packets are “interesting” and require further

analysis. While it is possible to pass all traffic directly

to the “Binary Detection and Extraction” module, it is

more efficient to prune the traffic sent to the later

stages, as they are very CPU-intensive. Currently, two

classification schemes are implemented in our
prototype system. The first is a simple and effective

honeypot scheme. When the system is initialized, it is

given a list of decoy hosts that exist for no other

purpose than to attract unsolicited traffic (the

effectiveness of honeypots has been explored in-depth

by [16]). Any sending host emitting traffic destined for

a honeypot address is considered suspicious; and any

packets sent by such a host will be analyzed.

 The second scheme is a bit more complicated,

and is useful for the detection of widespread worm

traffic. Initially, we note the un-used IP address space

in our network, with the premise that any traffic
repeatedly destined to the un-used address space may

be indicative of malicious scanning. If a host sends an

initial packet to an un-used address, a count n is

initialized. If we continue to observe this host sending

additional packets to other un-used addresses, the count

will be incremented until it reaches a threshold t, at

which point, packets emanating from that suspicious

host will be considered for further analysis.

4.2. Binary Detection and Extraction

 In this work, we are interested in examining

binary threats primarily in the form of buffer overflow

exploits (we do not currently support detection of

textual web attacks, brute force password attacks, etc.).

Thus, we need a way to identify binary data within

packet payloads. To accomplish this task, we need to

understand how buffer overflow exploits are

constructed and presented to a victim host.

 Figure 4. Format of buffer overflow exploits.

Traditional buffer overflow exploits (Figure 4)

have taken the following form: a region of NOP

instructions at the lowest address region on the stack,

followed by the instructions the attacker wishes to

execute, followed by a series of return addresses that

will overwrite the return pointer of the subroutine and
point back into the stack. Historically in IDS, it has

been easy to detect the NOP region, as it was only

composed of a repeating series of the same instruction

(i.e. 0x90 for the x86 architecture). However, this is no

longer the case – polymorphic exploit generators can

use a whole host of instructions that have “NOP-like”

behavior, thus making the NOP region variant. This

leaves us with the return address region as a possible

place to observe some invariant data. Only the least

significant byte can be varied, since the return address

must point back to a valid address in the buffer.

 In practice, we observe network buffer
overflow exploits to consist of a well-formed initial

application layer protocol request, with exploit content

usually resembling (but not necessarily matching

exactly) Figure 4 encapsulated within it. By noting

what is expected in a protocol request, and what is

abnormal, we can often locate malicious binary

content. Figure 5 displays the content of the Code Red

II worm exploit. Here, a well-formatted HTTP GET

request is made to a module of the IIS webserver. A

stream of repeated ‘X’ characters initiates the overflow,

and these characters are followed by the Unicode data.
Our module has the ability to distinguish between

acceptable protocol usage and suspicious repetition.

Thus, we can locate the approximate region where we

believe the binary content is located, and extract it. In

the case of Unicode data (as is observed in Figure 5),

we translate it into an appropriate binary form, for

further analysis. This process will yield some binary

data that is benign, but it dramatically cuts down on the

amount of data that must be processed by the

disassembler which is the slowest stage in our system.

This binary identification and extraction process can be

bypassed but it will result in a system with much
degraded performance.

Figure 5.Code Red II exploit portion.

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX%u9090%u6858%cbd3

%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u

cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b

00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

4.3. Semantic Analysis

 Because we have chosen a specific commercial
product, IDA Pro [17], for our disassembler stage, our

NIDS can only disassemble x86 code at the present.

The binary detection and extraction stage produces

special binary frames (binary data extracted from

network packets) in a format that can be processed by

the disassembler. Once an assembly code

representation is generated by the disassembler, we

prune the code to include only the instructions we are

interested in. Any excess code from the program frame

is discarded.

 At this point, we have a sequence of instructions
that we can analyze semantically. The semantic

analyzer uses the template matching scheme [5] that we

have described in Section 3. The templates that we

built have the ability to handle out of order code, NOP

insertion, junk instruction insertion, and register

reassignment. If a piece of code matches one of our

templates, an alert is generated, and further action may

be taken against the offending IP address.

5. System Evaluation

 We have conducted an extensive evaluation of

our semantic NIDS, against real malware samples and

captured network traffic. All of our tests were

performed on an Intel P4 2.8Ghz system with 512MB

of memory. One of our primary goals with this work is

to establish a reliable method for detecting

polymorphic exploit instances. Thus, we evaluate two
popular toolkits for polymorphic exploit generation,

along with a publicly available exploit known to

contain polymorphic shellcode. We also test a month’s

worth of benign traffic, with classification disabled (all

packet payloads are analyzed). Our preliminary results

are extremely promising: we observe no false positives

when we analyzed the benign traffic and we can nearly

detect all polymorphic versions of malicious contents

generated using ADMmutate [11] and Clet engine [9].

5.1. Linux Shell Spawning

 In this first test, we selected eight different

remote exploits, which can spawn a shell in a machine

running the Linux operating system. A template was

created (Figure 6) to match the relevant system calls

associated with this behavior. It can detect shells

created as an immediate instance of the exploit, and,
with an extension, those that are bound to a separate

network port. In our experiment, we built an exploit

generator tool that sends exploit packets to a honeypot

machine registered with the NIDS. All eight exploits

are successfully detected as spawning a shell, while the

two that bind the shell to a different port are also noted

as such.

Figure 6. Template for Linux shell spawning

code.

 The results for this first set of experiments are

tabulated in Table 1. The running time for these eight

instances ranges from 2.36 seconds to 3.27 seconds. The

average binary code size is less than 10Kbytes for these

exploits. As a comparison, we ran two variants of the

Netsky virus with an average code size of 22 Kbytes

through our program and it takes about 6.5 seconds each

time. The time reported in [5] is about 40 seconds.

Table 1. Linux shell spawning buffer overflow

exploits.

5.2. Polymorphic Shellcode Detection

 To detect polymorphic code, we created a

template that captures the decryption loop

functionality described in Section 3. Then, we created

a tool that can generate numerous exploits towards a

honeypot machine that was registered with the NIDS.

The first test we perform is to verify that our system

can detect the iis-asp-overflow.c exploit based on the

template we designed. This particular exploit has a

decryption routine prefixed to an encoded shell-

spawning region of code. The shellcode is encoded to

evade detection by IDSs that employ pattern-matching

techniques. Using the template we designed, our

system was able to detect the decryption routine. The

running time for this test is 2.14 seconds.

Figure 7. Template for alternate ADMmutate

decryption loop.

The ADMmutate kit [11] is a popular

polymorphic shellcode generation toolkit. It

incorporates NOP-like instruction insertion, garbage

instruction insertion, equivalent instruction

replacement, and out-of-order code sequencing to
obscure its decryption routine. For testing, 100

instances of polymorphic payloads were generated,

and inserted into a generic network buffer overflow

exploit. The first test yielded only a 68% detection

rate. Further manual inspection of the assembly code

generated by our NIDS led us to establish that

ADMmutate incorporates one of two distinct methods

for its decryption routine. The first is the xor

decryption our template can match, while the second is

a decoding scheme involving a sequence of mov, or,

and, and not instructions that perform operations on a
single memory location and register pair. Once we

developed a template that can match such behaviors,

we achieved 100% detection of all shellcodes

generated by ADMmutate.

Table 2. Polymorphic shellcode detection.

The Clet engine [9] is another popular tool for

generating polymorphic shellcode. It relies on

obscuring an xor based decryption routine in a fashion

that will defeat data mining approaches to IDS. Thus, it

incorporates many of the same features as ADMmutate,

but Clet can also score the feature distribution
probabilistically, so that the packet can appear to be

“normal traffic.” Our xor decryption template matched

all 100 shellcode instances that Clet generated.

5.3. Code Red II Worm Detection

 A template was devised to match the initial

exploitation vector of the Code Red II worm. We tested
this template against 12 5-minute traces collected from

two Class B production networks, each with a total

packet count of over 200,000. Before evaluation, we

noted the correct number of instances of Code Red II

within each capture. The results are tabulated in Table 3.

From Table 3, one can note that every instance was

classified and matched correctly by our NIDS.

Table 3. Detection of the Code Red II Worm.

5.4. False Positive Evaluation

 For a final test, we disabled traffic

classification on the NIDS, and examined every

packet’s payload in a month’s worth of traffic captured
from two Class C networks (a total capture of 566MB).

Most of the packets in this trace are legitimate web

traffic. The traffic was examined beforehand, to ensure

none of the threats we are attempting to detect with our

current template set (decryption routines, shell

spawning, Code Red II memory addressing) were

present. No false positives were reported from our

template matching module; this is consistent with the

findings of [5], though now confirmed in the network

scenario.

6. Conclusion

 We have designed and built a NIDS with

semantic analysis capability. We have performed

extensive tests on our prototype system. Our results

show that using high quality templates, our system is

able to detect a wide variety of code exhibiting the same

behavior, as opposed to the same formal syntax. Our

experimental evaluation shows that our system does not

produce any false positives when tested against a

network trace of benign traffic. In the near future, we

intend to classify more exploit behaviors so that we can

generate additional useful templates that can be used in
our NIDS to detect additional families of malicious

traffic (i.e. email worms). We also intend to optimize

our implementation so that it can run even faster than

what has been achieved.

Acknowledgements

We would like to thank Vinod Yegneswaran,
Dr. Paul Barford, and the Wisconsin Advanced Internet

Laboratory for their willingness to share several

network traces that we have used in this paper.

7. References

 [1] Reuters. Virus damage estimated at $55 billion in

 2003. Jan. 2004,

 http://msnbc.msn.com/id/3979687/.

 Last accessed on 6 Jan. 2006.
 [2] M. Roesch, Snort - lightweight intrusion detection

 for networks. LISA ’99: Proceedings of the 13th

 USENIX conference on System administation,

 Seattle, Washington, 229-238, 1999.

 [3] V. Paxson. Bro: a system for detecting network

 intruders in real-time. Computer Networks,

 Amsterdam, Netherlands, 31 (23-24): 2435-2463,

 1999.

 [4] H.D. Moore, C. Shannon, G. Voelker, and S.

 Savage. Internet quarantine: requirements for

 containing a self-propagating code. Proceedings of
 the 2003 IEEE Infocom Conference, April 2003.

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song and R.

 Bryant. Semantics-aware malware detection. IEEE

 Security and Privacy Symposium, May 2005.

 [6] V. Yegneswaran, J. Griffin, P. Barford and S. Jha.

 An architecture for generating semantic-aware

 signatures. 14th USENIX Symposium on Security,

 August 2005.

 [7] H. Kim and B. Karp. Autograph: toward automated,

 distributed worm signature detection. Proceedings of

 the 13th Usenix Security Symposium, 2004.

 [8] S. Singh, C. Estan, G. Varghese, and S. Savage.

 Automated worm fingerprinting. Proceedings of the

 6th USENIX Symposium on Operating Systems

 Design and Implementation, 2004.

 [9] CLET Team. Polymorphic shellcode engine using

 spectrum analysis. Phrack Magazine, 11(61), 2003.

[10] L. Gao, J. Wu, S. Vangala, and K. Kwiat. An
 effective architecture and algorithm for detecting

 worms with various scan techniques. Proceedings of

 NDSS, 2004.

[11] K2. ADMmutate 0.8.4. Published online at
 http://www.ktwo.ca/ADMmutate-

 0.8.4.tar.gz. Last accessed on 6 Jan. 2006.

[12] S. Stolfo and K. Wang. Anomalous payload-based

 network intrusion detection. Proceedings of Recent

 Advances in Intrusion Detection (RAID), Sept.
 2004.

[13] M. Locasto, J. Parekh, S. Stolfo, A. Keromytis, T.

 Malkin, and V. Misra. Collaborative distributed

 intrusion detection. Tech Report CUCS-012-04,

 Department of Computer Science, Columbia

 University, 2004.

[14] J. Newsome, B. Karp, and D. Song. Polygraph:

 automatically generating signatures for polymorphic

 worms. Proceedings of the IEEE Sysmposium on

 Security and Privacy, 2005.

[15] R. Pang, V. Yegneswaran, P. Barford, V. Paxson,

 and L. Peterson. Characteristics of internet
 background radiation. IMC '04: Proceedings of the

 4th ACM SIGCOMM conference on Internet

 measurement, Oct. 2004.

[16] The Honeynet Project. Project homepage.

 http://project.honeynet.org. Last accessed on 6 Jan.

 2006.

[17] DataRescue. IDA Pro – interactive disassembler.

 Published online at

 http://www.datarescue.com/idabase.

 Last accessed on 6 Jan. 2006.

[18] CrypKey. Published online at

 http://www.crypkey.com. Last accessed on

 6 Jan. 2006.

[19] ASPack Software. ASProtect. Published online at

 http://www.aspack.com. Last accessed on 6

 Jan. 2006.

