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Abstract 

 

Malicious network traffic, including widespread worm 

activity, is a growing threat to Internet-connected 

networks and hosts. In this paper, we propose a 

network intrusion detection system (NIDS) with 

semantics-aware capability. Our NIDS segregates 

suspicious traffic from the regular traffic flow, extracts 

binary code from the suspicious traffic, and performs 

semantic analysis on it to identify potential threats. Our 

contributions in this work are threefold: (a) we believe 

our prototype is the first NIDS that provides semantics-

aware capability, (b) our implementation is more 

efficient than what is reported in [5], (c) our designed 

templates can capture polymorphic shellcodes with 

added sequences of stack and mathematic operations. 

 
 
1. Introduction 

 
 In recent years, computer intrusion has been on 
the rise. The popularity of the Internet and the 

widespread use of homogeneous software provide an 

ideal climate for infectious programs. The cost of 

viruses and worms in 2002 was estimated to be 45 

billion dollars [1]. In 2003, this number jumped to 55 

billion dollars [1]. Much money has to be spent on 

researching techniques that can fend off intrusion 

attempts such that computer systems can operate 

effectively. A popular technology called the Intrusion 

Detection System (IDS) has emerged to identify and 

block intrusion attempts. Popular network IDS (NIDS) 

systems such as Snort [2] and Bro [3] utilize a signature-
based approach to detect malicious network traffic. In 

these systems, static signatures of known attacks are 

used to identify attack packets. A major drawback of 

this approach is that unknown attacks cannot  

be detected – the ones, which conceivably will cause the 

most damage. 

 
  
 Typically, new attacks are detected in an ad hoc 

fashion through a combination of intrusion detection 

systems alerting potential attacks, and skilled security 

personnel manually analyzing traffic to generate attack 

characterization. Such an approach is clearly not 

sufficient since it may take hours to generate a new 

worm signature. In recent studies [4], the authors 

suggest that if the attack traffic is indicative of a worm 

outbreak, effective containment may require a reaction 

time of well under sixty seconds. Thus, new techniques 

that can help to identify threats from unseen worms or 
exploit packets need to be devised. 

 In this paper, we describe a prototype system 

with semantics-aware capability that we have built to 

automatically identify threats from some unknown 

malicious network traffic. This work is an extension of 

the approach presented in [5]. The semantics-aware 

malware detection algorithm of [5] is an extremely 

powerful tool for program profiling. Based on the 

observation that certain malicious behaviors appear in 

all variants of a certain kind of malware, the authors 

propose using template-based matching to detect 

malware. Their approach looks for a match of program 
behaviors rather than program syntax matching. In this 

manner, polymorphic and metamorphic code instances 

can be identified right along with their static 

counterparts. However, in [5], the authors only perform 

experiments on a non-networked host with standalone 

virus samples as well as evaluating their templates 

against a set of benign programs. As most threats to 

end-systems now emanate from the Internet, much in 

the form of self-propagating network code, network 

enabled detection is critical. Thus, in this work, we 

have built a full-featured network intrusion detection 
system with semantic-aware capability that can detect 

not only viruses, but remote exploits,  including worm 

traffic. Through rigorous testing, we show that 

semantic detection is an extremely powerful tool for 

identifying static and polymorphic network exploits. 



Our system can perform more efficiently than the 

system presented in [5].  

 The rest of the paper is organized as follows: In 

Section 2, we describe some related work and discuss 

how one particular work motivates this research. In 

Section 3, we describe the motivation for the semantic 
analysis of malicious code, and discuss how binary 

exploits work. In Section 4, we present the system 

architecture of the NIDS we have built and describe in 

detail how different stages of the system work. We 

describe our experiments and the results we obtained in 

Section 5. Finally, we summarize our findings and 

discuss some future work that we intend to explore in 

Section 6.         
 

2. Related Work  
 

 Much research has been devoted to intrusion 

detection in recent years. Two enormously popular 

open source tools, Snort [2] and Bro [3], have shown 
that static signature based IDSs can be quite successful 

in the face of known attacks. Combined with automatic 

monitoring and incident response, system 

administrators have a powerful tool against network 

attacks. In [13], the authors present the case for 

collaborative intrusion detection system where 

intrusion detection nodes cooperate to determine if a 

network attack is taking place and take corrective 

actions if it does. Others have sought to use statistical 

approaches to detect worm outbreaks. In [10], the 

authors propose a method to identify a worm victim by 
observing if the number of scans per second it performs 

exceeds a certain threshold. The numbers of worm 

victims observed in successive windows are then 

compared to the numbers predicted using a typical 

worm spread model and if they match, then a worm 

outbreak is declared.  

 In [7], [8], the authors show that byte-level 

analysis of packet payloads can yield useful signatures 

for worm detection.  The premise being some portions 

of the worm code will be invariant. At first glance, 

these approaches looked promising, however, in 
practice, they generate far too many signatures, with a 

sometimes-undesirable accuracy rate. A recent paper 

[12] also addresses the polymorphic worm detection 

problem in a similar manner. They advocate using 

disjoint data signatures. With [14], we begin to see a 

research trend towards using semantics knowledge for 

potential worm detection. Here, the authors observe 

that invariant byte positions may be disjoint (a result of 

advanced polymorphic techniques), but will be present 

nonetheless as they are integral to functionality. With 

[5] and [6], the application of semantics is introduced. 

Non-binary attacks, such as URL based web server 
exploits, are analyzed and clustered in a data-mining 

scheme in [6]. In this work, we built upon the approach 

described in [5]. Our contributions are three fold: (a) 

our prototype is a complete NIDS that provides 

semantic aware capability, (b) our implementation is 

more efficient than what is reported in [5], (c) our 

designed templates can capture polymorphic shellcodes 
with added sequences of stack and mathematic 

operations. 

 

3. Semantics-Aware Malware Detection 

Methodology 
 

 Current IDSs often use static signatures. 

However, new malware or worms that have appeared 

recently indicate that the authors of such malicious 

code often use code obfuscation to evade IDSs that use 

static signatures. There are two forms of code 

obfuscation: polymorphism and metamorphism. 

Traditional polymorphism has taken the form of an 
encrypted body of code with an attached (and often 

obfuscated) decryption routine. The encryption 

technique used is good enough to fool pattern-matching 

IDSs. Metamorphic code relies on the obfuscation of 

the entire code base, including code transposition, 

equivalent instruction substitution, jump insertion, 

NOP insertion, garbage instruction insertion, and 

register reassignment. Figure 1 shows a simple 

decryption routine and two obfuscated variants of that 

same decryption routine. The decryption routine shown 

in Figure 1(a) consists of a loop that performs an xor of 
a memory location against a static key, followed by an 

increment of the memory address to the next location. 

Figure 1(b) makes several changes to the code in 

Figure 1(a), including obscuring the key by adding mov 

and add instructions that work with a register. The inc 

instruction is also substituted with an add instruction.   

 

 

  

  

 

 
 

 

 

 

 

 

 

 

 

 

 

       Figure 1. Three equivalent code routines. 

decode:
  xor byte ptr [eax], 95h
  inc eax
  loop decode

   (a) Simple xor based decryption routine

decode:

  mov ebx, 31h

  add ebx, 64h
  xor byte ptr [eax], ebx
  add eax, 1
  loop decode

   (b) 2nd instance of xor decryption routine

decode:

  mov ecx, 0

  inc ecx

  inc ecx

  jmp    one

 two:      add eax, 1

  jmp three

 one:   mov ebx, 31h

  add ebx, 64h
  xor byte ptr [eax], ebx
  jmp two

 three:   loop decode

   (c) obfuscated instance of xor decryption



These seemingly minor changes are good 

enough to fool a pattern matching IDS. Figure 1(c) 

improves on 1(b) by adding garbage instructions, and 

changing the code order while preserving the execution 

sequence with jmp instructions. One can think of a 

plethora of equivalent programs – thus, we must rely 
on the meaning of the code, and not its syntax, for 

reliable detection. 

 The authors of [5] reduce the problem of 

semantic equivalency to a template matching problem. 

In essence, if we can create a template describing the 

expected behavior of a piece of code, we can match it 

to an actual code routine to see if the tested code 

exhibits the same behavior. Stated formally in [5], “A 

program P satisfies a template T (denoted as P = T) iff 

P contains an instruction sequence I such that I 

contains a behavior specified by T.” A template will 

consist of a sequence of instructions, along with its 

associated variables and symbolic constants. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. A template and matching assembly 

code segment. 

 
 In Figure 2, we show an instance of a template 

on the left, and a matched assembly code segment on 
the right. The template shown is designed to match the 

decryption routine described in Figure 1. Each template 

is simply a description of the behavior we expect from 

a known routine – not the exact syntax that will show 

up in a code fragment. By looking at the assembly code 

segment on the right, we see that the code segment 

does not have a one-to-one correspondence with the 

template but the behavior defined by the template is 

present in the code routine. Thus, we can construct an 

algorithm to locate patterns defined in templates in real 

assembly code segments. 

           While [5] formalizes the template matching 
problem rather nicely, it presents a somewhat limited 

engineering approach to intrusion detection. The 

system that the authors built currently assumes that 

malware samples are available as inputs to their 

system. In order for the semantics-aware approach to 

be useful in a NIDS, a classifier needs to be provided 

so that semantic analysis is only performed on a small 

percentage of suspicious traffic. In addition, we believe 

that false positives are bound to emerge unless a good 

classifier is provided. For example, during the course 

of this research, we identified several legitimate 
programs (Crypkey [18], ASProtect [19]) that obscure 

binaries with simple encryption routines as a form of 

copy protection. Locating a decryption loop (the 

primary test in [5]) within a program protected by one 

of these applications will signal a false alert. As copy 

protection schemes begin to incorporate methods 

reminiscent of code circulating in the computer 

underground, we expect the false positive rate of the 

detection scheme based on purely checking installed 

binary programs on an end-host as described in [5] to 

grow accordingly. However, it is highly unlikely for 

copy protected program to be embedded in a web 
request sent by a scanning source, thus, one can easily 

differentiate between the two scenarios using a smart 

traffic classifier. Thus, we incorporate (a) a traffic 

classifier, and (b) a binary data identification and 

extraction module in our prototype. The combination of 

these features, and the semantic analysis allow the 

NIDS system we have built to be more effective than 

other NIDSs that are based on syntactic pattern 

matching approaches. In addition, our NIDS is more 

efficient than that reported in [5]. 

 

  4. NIDS with Semantic-Aware Capability 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3. The semantic-aware NIDS 

architecture. 

 
In this work, we develop a full NIDS that 

segregates suspicious traffic from regular traffic flow, 

extracts binary data from suspicious traffic and 

performs semantic analysis on the binary data in order 
to identify potential threats. Such a NIDS does not rely 

on fingerprints or other syntax based methods. Figure 3 

shows the system architecture of our NIDS. It consists 

of five major components, namely (a) traffic classifier, 



(b) binary data identification and extraction module, (c) 

disassembler, (d) intermediate representation generator, 

(e) semantic analyzer. This NIDS can be deployed on a 

standalone machine connected to the network. 

 

4.1. Traffic Classification 
 

 Traffic classification is necessary to determine 

which packets are “interesting” and require further 

analysis. While it is possible to pass all traffic directly 

to the “Binary Detection and Extraction” module, it is 

more efficient to prune the traffic sent to the later 

stages, as they are very CPU-intensive. Currently, two 

classification schemes are implemented in our 
prototype system. The first is a simple and effective 

honeypot scheme. When the system is initialized, it is 

given a list of decoy hosts that exist for no other 

purpose than to attract unsolicited traffic (the 

effectiveness of honeypots has been explored in-depth 

by [16]). Any sending host emitting traffic destined for 

a honeypot address is considered suspicious; and any 

packets sent by such a host will be analyzed. 

 The second scheme is a bit more complicated, 

and is useful for the detection of widespread worm 

traffic. Initially, we note the un-used IP address space 

in our network, with the premise that any traffic 
repeatedly destined to the un-used address space may 

be indicative of malicious scanning. If a host sends an 

initial packet to an un-used address, a count n is 

initialized. If we continue to observe this host sending 

additional packets to other un-used addresses, the count 

will be incremented until it reaches a threshold t, at 

which point, packets emanating from that suspicious 

host will be considered for further analysis. 

 

4.2. Binary Detection and Extraction 
 

 In this work, we are interested in examining 

binary threats primarily in the form of buffer overflow 

exploits (we do not currently support detection of 

textual web attacks, brute force password attacks, etc.). 

Thus, we need a way to identify binary data within 

packet payloads. To accomplish this task, we need to 

understand how buffer overflow exploits are 

constructed and presented to a victim host. 
 

 

 

 

 

 

     Figure 4. Format of buffer overflow exploits. 
 

 

Traditional buffer overflow exploits (Figure 4) 

have taken the following form: a region of NOP 

instructions at the lowest address region on the stack, 

followed by the instructions the attacker wishes to 

execute, followed by a series of return addresses that 

will overwrite the return pointer of the subroutine and 
point back into the stack. Historically in IDS, it has 

been easy to detect the NOP region, as it was only 

composed of a repeating series of the same instruction 

(i.e. 0x90 for the x86 architecture). However, this is no 

longer the case – polymorphic exploit generators can 

use a whole host of instructions that have “NOP-like” 

behavior, thus making the NOP region variant. This 

leaves us with the return address region as a possible 

place to observe some invariant data. Only the least 

significant byte can be varied, since the return address 

must point back to a valid address in the buffer. 

 In practice, we observe network buffer 
overflow exploits to consist of a well-formed initial 

application layer protocol request, with exploit content 

usually resembling (but not necessarily matching 

exactly) Figure 4 encapsulated within it. By noting 

what is expected in a protocol request, and what is 

abnormal, we can often locate malicious binary 

content. Figure 5 displays the content of the Code Red 

II worm exploit. Here, a well-formatted HTTP GET 

request is made to a module of the IIS webserver. A 

stream of repeated ‘X’ characters initiates the overflow, 

and these characters are followed by the Unicode data. 
Our module has the ability to distinguish between 

acceptable protocol usage and suspicious repetition. 

Thus, we can locate the approximate region where we 

believe the binary content is located, and extract it. In 

the case of Unicode data (as is observed in Figure 5), 

we translate it into an appropriate binary form, for 

further analysis. This process will yield some binary 

data that is benign, but it dramatically cuts down on the 

amount of data that must be processed by the 

disassembler which is the slowest stage in our system. 

This binary identification and extraction process can be 

bypassed but it will result in a system with much 
degraded performance. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.Code Red II exploit portion. 
 

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX%u9090%u6858%cbd3

%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u

cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b

00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0



4.3. Semantic Analysis 
 

 Because we have chosen a specific commercial 
product, IDA Pro [17], for our disassembler stage, our 

NIDS can only disassemble x86 code at the present. 

The binary detection and extraction stage produces 

special binary frames (binary data extracted from 

network packets) in a format that can be processed by 

the disassembler. Once an assembly code 

representation is generated by the disassembler, we 

prune the code to include only the instructions we are 

interested in. Any excess code from the program frame 

is discarded. 

 At this point, we have a sequence of instructions 
that we can analyze semantically. The semantic 

analyzer uses the template matching scheme [5] that we 

have described in Section 3. The templates that we 

built have the ability to handle out of order code, NOP 

insertion, junk instruction insertion, and register 

reassignment. If a piece of code matches one of our 

templates, an alert is generated, and further action may 

be taken against the offending IP address.  

 

5. System Evaluation 
 

 We have conducted an extensive evaluation of 

our semantic NIDS, against real malware samples and 

captured network traffic. All of our tests were 

performed on an Intel P4 2.8Ghz system with 512MB 

of memory. One of our primary goals with this work is 

to establish a reliable method for detecting 

polymorphic exploit instances. Thus, we evaluate two 
popular toolkits for polymorphic exploit generation, 

along with a publicly available exploit known to 

contain polymorphic shellcode. We also test a month’s 

worth of benign traffic, with classification disabled (all 

packet payloads are analyzed). Our preliminary results 

are extremely promising: we observe no false positives 

when we analyzed the benign traffic and we can nearly 

detect all polymorphic versions of malicious contents 

generated using ADMmutate [11] and Clet engine [9]. 

 

5.1. Linux Shell Spawning 

 
 In this first test, we selected eight different 

remote exploits, which can spawn a shell in a machine 

running the Linux operating system. A template was 

created (Figure 6) to match the relevant system calls 

associated with this behavior. It can detect shells 

created as an immediate instance of the exploit, and, 
with an extension, those that are bound to a separate 

network port. In our experiment, we built an exploit 

generator tool that sends exploit packets to a honeypot 

machine registered with the NIDS. All eight exploits 

are successfully detected as spawning a shell, while the 

two that bind the shell to a different port are also noted 

as such.  

  
                            

 
  

Figure 6. Template for Linux shell spawning 

code. 
 
 The results for this first set of experiments are 

tabulated in Table 1.  The running time for these eight 

instances ranges from 2.36 seconds to 3.27 seconds. The 

average binary code size is less than 10Kbytes for these 

exploits. As a comparison, we ran two variants of the 

Netsky virus with an average code size of 22 Kbytes 

through our program and it takes about 6.5 seconds each 

time. The time reported in [5] is about 40 seconds. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Table 1. Linux shell spawning buffer overflow 

exploits. 

 

5.2. Polymorphic Shellcode Detection 
 

 To detect polymorphic code, we created a 

template that captures the decryption loop 

functionality described in Section 3. Then, we created 

a tool that can generate numerous exploits towards a 

honeypot machine that was registered with the NIDS. 

The first test we perform is to verify that our system 

can detect the iis-asp-overflow.c exploit based on the 

template we designed. This particular exploit has a 



decryption routine prefixed to an encoded shell-

spawning region of code. The shellcode is encoded to 

evade detection by IDSs that employ pattern-matching 

techniques. Using the template we designed, our 

system was able to detect the decryption routine. The 

running time for this test is 2.14 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Template for alternate ADMmutate 

decryption loop. 
 

The ADMmutate kit [11] is a popular 

polymorphic shellcode generation toolkit. It 

incorporates NOP-like instruction insertion, garbage 

instruction insertion, equivalent instruction 

replacement, and out-of-order code sequencing to 
obscure its decryption routine. For testing, 100 

instances of polymorphic payloads were generated, 

and inserted into a generic network buffer overflow 

exploit. The first test yielded only a 68% detection 

rate. Further manual inspection of the assembly code 

generated by our NIDS led us to establish that 

ADMmutate incorporates one of two distinct methods 

for its decryption routine. The first is the xor 

decryption our template can match, while the second is 

a decoding scheme involving a sequence of mov, or, 

and, and not instructions that perform operations on a 
single memory location and register pair. Once we 

developed a template that can match such behaviors, 

we achieved 100% detection of all shellcodes 

generated by ADMmutate. 

  

 

           

    

 

 

 

 

 

Table 2. Polymorphic shellcode detection. 

The Clet engine [9] is another popular tool for 

generating polymorphic shellcode. It relies on 

obscuring an xor based decryption routine in a fashion 

that will defeat data mining approaches to IDS. Thus, it 

incorporates many of the same features as ADMmutate, 

but Clet can also score the feature distribution 
probabilistically, so that the packet can appear to be 

“normal traffic.” Our xor decryption template matched 

all 100 shellcode instances that Clet generated. 

 

5.3. Code Red II Worm Detection 
 

 A template was devised to match the initial 

exploitation vector of the Code Red II worm. We tested 
this template against 12 5-minute traces collected from 

two Class B production networks, each with a total 

packet count of over 200,000. Before evaluation, we 

noted the correct number of instances of Code Red II 

within each capture. The results are tabulated in Table 3. 

From Table 3, one can note that every instance was 

classified and matched correctly by our NIDS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Detection of the Code Red II Worm. 

 

5.4. False Positive Evaluation 
 

 For a final test, we disabled traffic 

classification on the NIDS, and examined every 

packet’s payload in a month’s worth of traffic captured 
from two Class C networks (a total capture of 566MB). 

Most of the packets in this trace are legitimate web 

traffic. The traffic was examined beforehand, to ensure 

none of the threats we are attempting to detect with our 

current template set (decryption routines, shell 

spawning, Code Red II memory addressing) were 

present. No false positives were reported from our 

template matching module; this is consistent with the 

findings of [5], though now confirmed in the network 

scenario. 

 

 

 



6. Conclusion 
 

 We have designed and built a NIDS with 

semantic analysis capability. We have performed 

extensive tests on our prototype system. Our results 

show that using high quality templates, our system is 

able to detect a wide variety of code exhibiting the same 

behavior, as opposed to the same formal syntax. Our 

experimental evaluation shows that our system does not 

produce any false positives when tested against a 

network trace of benign traffic. In the near future, we 

intend to classify more exploit behaviors so that we can 

generate additional useful templates that can be used in 
our NIDS to detect additional families of malicious 

traffic (i.e. email worms). We also intend to optimize 

our implementation so that it can run even faster than 

what has been achieved.  
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