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Abstract—The veil of anonymity provided by smartphones
with pre-paid SIM cards, public Wi-Fi hotspots, and distributed
networks like Tor has drastically complicated the task of iden-
tifying users of social media during forensic investigations. In
some cases, the text of a single posted message will be the only
clue to an author’s identity. How can we accurately predict who
that author might be when the message may never exceed 140
characters on a service like Twitter? For the past 50 years,
linguists, computer scientists and scholars of the humanities
have been jointly developing automated methods to identify
authors based on the style of their writing. All authors possess
peculiarities of habit that influence the form and content of their
written works. These characteristics can often be quantified and
measured using machine learning algorithms. In this article, we
provide a comprehensive review of the methods of authorship
attribution that can be applied to the problem of social media
forensics. Further, we examine emerging supervised learning-
based methods that are effective for small sample sizes, and
provide step-by-step explanations for several scalable approaches
as instructional case studies for newcomers to the field. We argue
that there is a significant need in forensics for new authorship
attribution algorithms that can exploit context, can process multi-
modal data, and are tolerant to incomplete knowledge of the
space of all possible authors at training time.

Index Terms—Authorship Attribution, Forensics, Social Media,
Machine Learning, Computational Linguistics, Stylometry

I. INTRODUCTION

T is well known that the real lives of Internet users

sometimes turn out to be entirely different from who
they appear to be online, but the nature and consequence of
this phenomenon are changing. A recent exposé in the New
York Times Magazine [41] documented the case of a Russian
media agency that allegedly executed organized disinformation
campaigns on social media using pseudonyms and virtual
identities. It is assumed that some of these campaigns were
state sponsored. With an office full of media professionals,
the agency achieved success in promoting false news events
and influencing public opinion on politics, and was even able
to deceive the journalist covering the story for the Times.
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Fig. 1: Forensic authorship attribution is the process of infer-
ring something about the characteristics of an author from the
form and content of their writing present in a collection of
evidence [89]. The emergence of social media as a primary
mode of communication has challenged the traditional as-
sumption that a forensic investigation will have access to long-
form writing (i.e., letters and emails). In this article, we frame
the problem as a computational pipeline, in which features
are extracted from very small samples of text, and scalable
supervised learning is deployed to train author-specific models
and make predictions about unknown samples.

On the Internet, this practice is known as “trolling” —
a favorite pastime of bored adolescents, pundits, and un-
scrupulous social media coordinators. The organization and
scale of these trolling campaigns, however, suggests that the
practice has moved into a new phase, whereby corporations
and governments seek to control the discourse surrounding
popular events (both real and imagined) on social media. This
poses a legal and security dilemma on multiple fronts. If the
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underlying identities of the Russian media agency’s employees
could be automatically determined, content originating from
them could subsequently be flagged and monitored or blocked.
However, the Times discovered that the agency always routed
its Internet traffic through proxy servers, thus rendering useless
the easy path to doing so via the originating IP addresses.

A. Motivation for Automated Authorship Attribution Methods
for Social Media Forensics

The enabling factor in the above example is a reliance on
anonymity to ensure the success of a social media campaign.
How have recent changes in technology altered the landscape
for anonymous social media use? The proliferation of unlocked
smartphones and pre-paid SIMs from vending machines has
made relatively anonymous mobile Internet use a reality [153].
Similarly, public wi-fi hot spots are a favorite point of access
for illicit activity; it is simple to step into a coffee shop
with a laptop and blend into the crowd [69]. Many users
concerned about privacy are turning to the Tor service [48],
an Onion Routing network [154] that encrypts user data and
randomly sends it back and forth through various nodes for
anonymization. Finally, like the Russian media agency, one
can simply tunnel traffic through a series of proxy servers,
many of which are freely available and open to the public'.
None of these strategies is foolproof, but when two or more
are combined by a very careful individual, they can frustrate
an investigation to the point where network forensics cannot
be used. In such cases, the text left on a social media platform
may be our only clue to the author’s identity.

The goal of Authorship Attribution is to identify authors
of texts through features derived from the style of their
writing; this is called Stylometry. In the context of a criminal
investigation, this endeavor is termed Forensic Authorship
Attribution (Fig. 1). In contrast to other authorship attribution
tasks found in the broader world of signal processing like
active authentication [61], [62], forensic authorship attribution
does not assume a claimed identity before analysis to verify
a match. Instead, it is assumed that the source of a text is
either one author (or possibly several) out of a known set, or
an author that is unknown to investigators.

Automated approaches to authorship attribution via the
methods of statistical pattern recognition have been around for
decades [28], [52], [140], with more recent work evaluating
the utility of advanced machine learning techniques [50],
[87]. Authorship attribution as an academic discipline has
maintained a unique relationship to scholarship in the digi-
tal humanities, where the authentication of disputed literary
works is of interest. For that reason, much of the existing
work in this area remains unfamiliar to practitioners and
researchers in forensics at large, in spite of excellent attempts
at outreach (e.g., see Juola [89], Koppel et al. [108], and
Stamatatos [175]). However, the relationship between the work
of humanists and forensic examiners cannot be denied: both
groups seek to make accurate predictions about uncertainties
related to textual data.

Ihttps://incloak.com/proxy-list/

Notwithstanding, the underlying problem domains human-
ists and forensic examiners operate in can be rather different.
The longer the text is, the easier it is to compute stylometric
features, which become more reliable as more text is con-
sidered. For instance, a novel provides an investigator with a
wealth of information from which to extract stylistic clues. But
we face the opposite scenario when examining messages from
social media, where texts are very short and therefore a smaller
set of stylometric features is present in each one. In response
to this, some researchers suggest joining the messages in a
single document [139]. Even with preliminary results showing
some improvement, this is not realistic since we may not have
more than one message we wish to know the author of [166],
and whenever dealing with anonymous messages we cannot
guarantee that all of them belong to the same author. However,
we know that there is often enough distinct information in even
just a handful of sentences for a human reader to understand
that they are from a common source. For instance, consider
the following tweets from two prominent Twitter personalities.
These from Author A:

A.1: A beautiful reflection on mortality by a great
man.

A.2: Unintentional reductio ad absurdum: “Colleges
Need Speech Codes Because Their Students Are
Still Children”

A.3: The great taboo in discussions of economic in-
equality: Permanent income has nonzero heritability.

And these from Author B:

B.1: Incredible wknd w/ @CASAofOC. Thx to all
of the folks that helped raise $2.8 million to help
young people in need.

B.2: Thx 4 having me. Great time w/ you all

B.3: Great to meet you & thx for your support
@ChrissieM10

When reading these tweets, there can be no doubt that
Author A and Author B are different people. The first set of
tweets comes from the experimental psychologist and popular
science writer Steven Pinker?. A notable stylist, Pinker’s
tweets tend to be well composed and include diverse vocabu-
lary (“mortality,” “reductio ad absurdum,” “taboo,” “heritabil-
ity”’) even under the 140 character constraint. The second set
comes from Philadelphia Eagles quarterback Mark Sanchez’,
who deploys a more colloquial style of writing, including
frequent use of abbreviation (“Thx,” “wknd”). Such traits can
be incorporated into a model that is learned from whatever
limited information is at hand.

That is not to say further complications do not exist when
considering social media. Very different from essays, books,
and even signals from the audio domain, postings to social
media include irregular language usage common to the Inter-
net such as overemphasized punctuation, emoticons*, Internet
expressions® and a conspicuous lack of spell-checking. On

Zhttps://twitter.com/sapinker

3https://twitter.com/mark_sanchez

4The ubiquitous faces made with ASCII symbols such as: “:-)”, “’(”, “:-D”
and “>:(”

5Common examples are: lol = laugh out loud; brb = be right back; imho
= in my humble opinion.
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the surface, these characteristics appear to be a rich source
of additional style markers. Notwithstanding, they also pose a
challenge, because punctuation and grammatical usage, emoti-
cons, and expressions are constantly evolving on the Internet,
bringing any assumption of authorial consistency on the part
of algorithm designers into question. To adapt authorship
attribution to social media, we need to find stylometric features
that capture the diversity of the language deployed therein.
Such features will generally be sparse in nature, generating
vectors of high dimensionality. Given that the messages are
short, this task requires a large amount of training data to
increase the classification accuracy, as well as fast and scalable
classifiers to process the number of features that are generated.

It must be emphasized that even the most promising tech-
niques in authorship attribution are not nearly as precise as
DNA testing, and forensic stylometry will rarely, if ever, be
used in a courtroom by itself®. Instead, we find that these
techniques are used to give direction in criminal investigations,
possibly by narrowing a search down to a few suspects or
backing up evidence against a particular suspect. Our working
hypothesis is that even with social media postings being much
smaller than books or essays, it is still possible to perform
authorship attribution that will be admissible in court by using
a dynamic set of features, adaptable to each group of users in
a particular social media ecosystem.

B. Contributions of this Review Article

In line with the above motivation, we present the following
material in this article:

1) An overview of forensic authorship attribution, with a
discussion of why it is distinct from more general au-
thorship attribution applications found in audio, speech
and language processing.

2) A comprehensive review of the methods for authorship
attribution that are applicable to forensics in a social
media context.

3) An analysis of feature sets that can extract a large
amount of information from a small amount of text,
which is crucial for achieving good performance in a
forensic setting.

4) A detailed walk-through of supervised learning methods
for authorship attribution for social media forensics
based on several recent strategies from the literature.

5) A discussion of open problems in forensic authorship
attribution.

To outline the rest of this article: a critical review of
existing methods for authorship attribution and how they
relate to forensic authorship attribution and social media is
provided in the next section (Sec. II). Thereafter, we develop
an instructional example for the reader that begins with a set of
features used by most techniques in the literature (Sec. III), and
goes on to evaluate these features using various classification
approaches applied to a new data set of tweets collected
for this article (Sec. IV). Finally, we conclude (Sec. V) by
calling the attention of the information forensics community

6Recent cases involving linguistic evidence have made their way into
courtrooms around the globe [45], [66]

to the many research opportunities available and the scientific
challenges that are waiting to be addressed in this exciting
research area.

II. A REVIEW OF METHODS IN AUTHORSHIP
ATTRIBUTION RELEVANT TO SOCIAL MEDIA FORENSICS

As a distinct discipline within stylometry at-large, forensic
authorship attribution is different from more general author-
ship attribution applications found in audio, speech and lan-
guage processing. Its defining characteristics are both domain
and process dependent, yielding challenges that at present have
not been fully addressed [89]. One such general attribution
application is Authorship Verification [14], [113], which has
received a considerable attention recently due to the PAN
evaluations [91], [177], [178]. Authorship verification is a
1:1 classification task with a known positive class, and a
negative class of “all texts by all other authors” that is vast
and extremely heterogeneous. In contrast, forensic authorship
attribution rarely, if ever, presents us with a known positive
class from the outset. We more often are faced with a problem
of 1: N identification: one unknown author and many potential
known authors to match against. Further, unlike authorship in
the digital humanities [81], [99], [120], the question of how
to falsify a prediction is important for the admissibility of
evidence. While it may be of no practical consequence to
ever definitively prove or disprove that Shakespeare authored
a disputed text in a lively scholarly debate, we do not have
that luxury in forensics. In all cases of forensic authorship
attribution, how we treat the task is instrumental to the design
of appropriate algorithms.

The key considerations for forensic authorship attribution
are:

« No control over the testing set that predictions will be
made from, which could be limited to a single sample.

« No control over the quality of the training data used to
create the attribution classifiers (in most circumstances).
The training regime must be tolerant to some measure of
noise, and a variable number of samples across known
authors.

o The need for a well-defined process. This is necessary
for accurate and efficient algorithms, as well as legal
consideration.

e The determination of a well-defined error rate for an
algorithm, before it is applied to a real-world problem.
This is necessary to understand if the probability of
making a mistake is too large for legal purposes.

o The potential for adversaries. It is possible that the author
under investigation is deliberately evading automated
attribution methods.

In light of the above, what are the components we need
to build a computational pipeline that is suitable for forensic
authorship attribution for social media analysis? The setup we
consider in this article is the following:

e A training corpus drawn from postings to social media.

o A pre-processing regime that filters (e.g., removes empty
samples or samples not in a target language), and extracts
features from text.
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o A feature selection and combination process that yields a
bag-of-words representation suitable for direct vector-to-
vector comparison or machine learning (either supervised
or unsupervised).

o A classifier training regime that yields author-specific
models.

o A decision making process that makes a prediction for
an anonymous tweet based on the classifier at hand, after
the source data has been pre-processed and transformed
into a bag-of-words representation.

Fig. 1 depicts how these components fit together. In the fol-
lowing pages of this section, we will explore each component
in depth by reviewing the most relevant literature for features,
classifiers, and strategies for attribution of small samples, as
well as those drawn directly from social media. Further, we
will introduce the idea of counter-attribution, leading to our
recommendation that algorithms should always be designed
with an adversarial scenario in mind. The papers presented
below were chosen based on their relevance to the problem of
social media forensics. Many other works exist in the broader
field of authorship attribution, and we refer the interested
reader to the existing surveys [89], [108], [175] that are more
general in scope.

A. General Stylometric Features for Forensic Authorship At-
tribution

At the most basic level, the words of a text are useful fea-
tures in and of themselves for authorship attribution. However,
all words cannot simply be treated as features: the authorial
signal will be buried in the noise of extraneous information
selected by chance during composition. Thus, it is common
to discard the function words, those words that occur most
frequently but carry little if any semantic meaning (Table I)
to isolate a more stable signal. However, function words can
be useful for attribution in some cases. For instance, function
words can be coupled with the most frequent punctuation, or
other stable features, becoming more flexible and discrim-
inative for use in a bag-of-words representation [93] that
disregards grammar, but preserves the underlying statistics of
language. Indeed, despite being one of the earliest features
suggested for manual authorship attribution [128], statistics
related to function words still appear as input to some algo-
rithmic approaches [111].

Other instantiations of word-based features also lend them-
selves to attribution tasks. Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) is a weighted measure of word
importance that is commonly used in information retrieval
tasks [93]. It is calculated by multiplying the term frequency
by the inverse document frequency for a specific word, where
term frequency refers to the number of times a particular
word appears in a document divided by the total number of
words in the document, and inverse document frequency a
logarithmically scaled quotient reflecting the total number of
documents in a corpus divided by the number of documents
containing the word. When applied to authorship attribution,
TF-IDF emphasizes the importance of key words commonly
deployed by a specific author, while deemphasizing those

TABLE I: Function words are a very basic, but sometimes
useful feature for authorship attribution in all contexts. They
can be particularly effective for social media analysis, because
they tend to be the words that occur most frequently. Thus the
probability of occurrence in even small samples like tweets is
high.

Part of Speech
Articles
Pronouns
Prepositions
Conjunctions
Auxiliary Verbs

Example English Function Words
the, a, an, some

I, we, he, she, they

in, under, towards, before

and, or, nor

be, can, could, ought

Interjections hi, bye, well, oh
Particles to, off, on, up
Expletives there, it

that are function words. More basic measures of word rarity,
such as the raw statistics of usage from a reference corpus,
are also useful features. Further, it is possible to compute
similar statistics based on the rarity of various word stems
or lemmas (automatically determined via stemming [158] or
lemmatization [64]).

Beyond word rarity measures, more elemental probabilistic
features of language prove to be very effective for attribution
tasks. And they do not need to be constrained to the word-
level of analysis. The n-gram is a feature that represents the
probability of an element e occurring given some history h,
or P(e|h). We will look at this feature in detail in Sec. III.
The advantage of using n-grams is that they capture lexical
preferences without the need of any a priori knowledge of
a grammar for a language, which is necessary to identify
features like function words. Word-level n-grams have been
shown to be effective for authorship attribution [79]. The
motivation for such a feature is that some authors might have
a preference for some expressions composed of two or more
words in sequence, the probability of which is captured by
n-grams of these words. Further, Forstall and Scheirer [56],
[57] have argued that character-level n-grams serve as useful
proxies for phonemes, and express the sound of words —
another facet of language that can be quantified as a feature
for authorship attribution.

With respect to the interaction between features and attribu-
tion scenarios, cross-topic and cross-genre attribution represent
realistic, but difficult attribution circumstances that must be
considered for many forms of writing. Stamatatos has studied
the robustness of n-grams for authorship attribution [176], and
has shown that the vast majority of existing research in this
area only examines a case in which the training and testing
corpora are similar in terms of genre, topic, and distribution
of texts. There are doubts over the possibility that all low-
level representational approaches are equally effective across
diverse sources of data. This is of particular interest in the
context of social media, due to the highly varying nature
of the messages. Sapkota et al. [160] show that not all n-
grams are created equal, and group them into three categories:
morphosyntax, thematic content and style. This categorization
improves our understanding of authorship attribution for a
social network combining numerous demographics and special
interests. Further, cross-topic analysis is growing in impor-
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tance [159]. Given the rapid turnover in topics discussed on
social media, the topics used for one user in training will likely
not be the same during testing. Features that are able to address
this are paramount [177].

The availability of natural language processing (NLP) toolk-
its for many languages enables the use of more complicated
stylometric features based on syntactic or semantic analysis of
texts [9], [64], [73], [74], [168], [179], [188]. Such features
are more abstract and, in theory, more resilient to thematic
changes. However, syntactic and semantic features heavily
rely on the underlying NLP toolkits generating them, which
can vary in effectiveness according to the domain and genre
of documents being processed. In general, these measures
are noisy and less effective than low-level features such as
word- and character-level n-grams. However, they are useful
complements that can enhance the accuracy of attribution
models [9], [188].

Part-of-Speech (POS) Tagging, the automated grammatical
annotation of text samples, is a potentially rich source of ad-
ditional feature information. For instance, processing the line
“A short sentence” with a POS tagger will yield (if accurate):
[(‘A’, ‘Indefinite Article’), (‘short’, ‘Adjective’), (‘sentence’,
‘Noun’), (°’, ‘Punctuation’)]. The motivation for the use of
a POS tagger in authorship attribution is that grammatical
usage can serve as an important indicator of an author’s style
— even in short messages. To this end, it is possible to use
a POS tagger specifically trained for messages from social
media like tweets [65], extract POS n-grams from additional
tweets therein, and train a classifier using these features. The
features may be effective in isolation, or they may be used to
augment other lexical feature sets. Such an approach can also
incorporate Twitter-specific content because hashtags, links,
retweets, etc. are assigned to specific POS tags. While POS
tagging is a standard tool in NLP, we suggest for the first time
its use coupled with supervised machine learning in authorship
attribution for social media (see Secs. III and IV).

An alternative to feature sets based on frequentist statistics
and supervised machine learning is to view the problem of
authorship attribution under the lens of complexity analysis of
authorship signal. Malyutov [124] rightly argues that many
machine learning approaches assume feature independence,
which is false when considering aspects of natural language
like function words. Using the theory of Kolmogorov con-
ditional complexity, one can quantify the entire signal of a
text, thus capturing any latent dependency, and assess simi-
larity between different signals in an information theoretical
sense. This can be accomplished via the use of compression
algorithms [36], [37], [124], [145], which produce individual
models for the texts they compress. Compression models for
individual known authors are applied to a text of unknown
provenance, and the one that results in the highest compression
rate observed determines the author that produced the text.
According to Oliveira et al. [145], complexity analysis has
several advantages: (1) a straightforward implementation and
application; (2) parameter-free operation; and (3) an overall
judgement on the document as a whole. We will examine
the utility of compression-based methods for social media
forensics in Secs. III and IV.

B. General Classifiers for Forensic Authorship Attribution

Once a feature set has been chosen, the next step is to select
a classification method. Unsupervised clustering is appealing,
in that there is no need to assemble large pre-labeled training
sets before making use of an attribution algorithm. In an
early contribution to the field, Burrows [28]-[31] proposed
the use of multivariate analysis in stylometry. In essence, the
algorithm generates vectors of frequencies of function words
and applies Principal Component Analysis (PCA) over them.
Authors are then classified via data clustering. Multivariate
analysis achieved some measure of success, and it quickly
became well-established for authorship attribution (see: [12],
[13], [19], [20], [75], [76], [80], [117], [132], [137], [186]).
However, the presence of some labeled data often improves
results dramatically. Accordingly, supervised approaches now
dominate the field.

Simple supervised classification methods are often dis-
missed in favor of the more elaborate, highly parametrized,
algorithms that are prevalent in the current literature. Occam’s
razor, of course, should not be ignored in cases where a
desired error rate can be achieved without a large amount of
computational time or extensive parameter tuning. Recall that
a classifier is any mapping from unlabeled data to discrete
classes [71]. Thus, a basic embodiment is statistical hypothesis
testing. For attribution problems, this means formulating a null
hypothesis that suggests that two works under consideration
are from different authors, and testing it via a hypothesis test
(e.g., Student’s t-test) [22], [39], [170], [171]. Of the various
hypothesis tests that have been proposed, x2 is particularly
attractive in that it can yield a ranked list of candidate au-
thors in a 1: /N attribution scenario [68], [134]-[136]. Another
straightforward classification method is to compute distance
to known vectors, and assign authorship based on the shortest
distance to a known vector that passes a particular matching
threshold. Cosine distance is one possibility for this [104].

The aforementioned techniques are formally supervised
classifiers, but they do not learn from data. With the avail-
ability of good quality labeled data, supervised classifiers can
be trained to make use of common patterns across many
samples, instead of making direct comparisons between in-
dividual samples. Along these lines, K-nearest Neighbors (K-
NN) assigns class membership based on the distance of an
unknown point to K points that are closest to it [71]. For
attribution, if the majority of those K nearest points are from
the same author, we can conclude that the unknown sample
should also be associated with the author of those points [78],
[97], [105], [195]. Another supervised classification method is
Naive Bayes, which is a straightforward application of Bayes’
theorem, whereby the probability of a given label y, and the
probabilities of particular feature vectors x; given a label y are
learned via Maximum A Posteriori (MAP) estimation. When
applying Naive Bayes to authorship attribution, the resulting
probability value for class assignment can be consulted to
determine if a match to a known author (reflected by the label
y) has been made [42], [78], [141], [150], [161], [195].

More sophisticated probabilistic formulations go beyond
the assumption of Naive Bayes that all feature vectors are
independent in order to capture meaningful dependencies
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across data samples. Markov Models for authorship attribution
calculate probabilities of letter or word transitions, which
are style-specific markers, placing them into author-specific
transition matrices [100], [101], [114]. Classification proceeds
by calculating the probability that an unknown text was gen-
erated by a particular transition matrix. Similarly, Kullback-
Leibler Divergence is used to measure the relative entropy
between the probability mass functions of features extracted
from texts, with authorship assigned to a pairing with the
lowest relative entropy [196], [197]. Other information theory
variants incorporating cross-entropy have been shown to be
viable as well [90], [183].

Highly parameterized models are a better option to learn
complex relationships in high dimensional feature spaces.
As artificial neural networks took hold in natural language
processing in the 1990s, they found their way into author-
ship attribution in part for this reason. Multi-layer neural
networks are well suited to learning models for non-linear
problems, and can process an enormous diversity of feature
sets. Matthews and Merriam [129] proposed extracting spe-
cific word ratios and function words as features, and then
applying back propagation to learn the weights for a small
network topology of five inputs, three hidden units, and two
outputs (a comparatively tiny architecture, considering today’s
deep learning architectures [17]). This work was followed
by many others in the same vein, some of which trained
more elaborate networks as computational resources expanded
(see: [78], [102], [103], [105], [118], [120], [127], [138],
[184], [187], [190]). While it is commonly alleged that it is
not possible to determine the basis by which neural networks
make classification decisions, the recent resurgence of this area
has yielded work that shows that this is possible for some
architectures in computer vision [193]. A similar analysis for
NLP would be an important next step.

Like other areas of machine learning such as core NLP and
computer vision, the development of features and classification
methods for authorship attribution has tracked the evolution of
processing power in computer hardware, moving from univari-
ate to multivariate analysis and expanding from a handful of
simple function words to thousands of character- and word-
level n-grams. In authorship attribution, expanding the feature
space improves classification, but also requires additional com-
putational resources for better classifiers to adequately process
the number of generated features. Fortunately, algorithms more
efficient than neural networks exist for such scenarios.

Nearest Shrunken Centroid [71] is a viable classification
method for authorship attribution from high-dimensional fea-
ture vectors [88]. During training, the algorithm calculates a
standardized centroid (the average of all of the training points)
for each authorship class, which is subsequently made more
compact via a parameterized threshold. A text whose author-
ship is questioned is then compared to each centroid, with the
resulting smallest distance indicating the authorship prediction.
More recent work on open set authorship attribution [162],
when it is assumed that not all possible authors are known
at training time, has applied an additional threshold over the
distance scores to allow for the possibility of rejection (i.e., no
centroid for a known author is close enough to the text under

consideration). Traditional multi-class classifiers will always
assign class membership, regardless of whether or not the
sample under consideration is known. Open set recognition is
a key open issue in authorship attribution, and we will return
to it in the following sections with specific examples.

Following trends in supervised machine learning, Support
Vector Machines (SVM) emerged as a method in authorship
attribution to address the same problem of high-dimensional
feature vectors for which Nearest Shrunken Centroid was
proposed. In practice, the SVM’s concept of maximum margin
leads to better generalization, and thus better accuracy for
binary and multi-class classification problems. SVM was first
applied to authorship attribution through the works of de Vel
et al. [46] for e-mails and Diederich et al. [47] for German
newspapers. Many subsequent works highlighted the overall
success of SVM in classifying authors (see: [1], [9], [53], [571,
[63], [64], [73], [106], [110]-[112], [148], [159], [161], [168],
[174]), making it a dominant classification strategy in the field.
The accuracy of approaches that use both n-grams and SVM
are further discussed in a recent report from Stamatatos [176],
who has investigated the question of whether the n-grams
remain effective for cross-topic authorship attribution.

SVMs are powerful, but they can easily overfit the training
data when kernelized, and are more suited to binary problems.
Decision Trees, which use a graphical model over multiple in-
puts to assign a class label to incoming data, are an alternative.
There is some utility to using decision trees on their own [1],
[8], but a meta-learning technique considering ensembles of
them is more powerful. Random Forest treats decision trees as
weak learners, and randomly subsamples sets of features from
a specific training dataset to improve accuracy and mitigate
overfitting. Recent research efforts have made extensive use of
random forests for authorship attribution and verification [15],
[33], [123], [147], [151]. Random forest classifiers are also
attractive because they provide a clear indication of the feature
weighting via variable importance measures. We will return to
the discussion of Random Forests and SVMs in the following
sections of this article.

Tables VI, VII and VIII in the appendix summarize the
classification approaches discussed in this section, along with
their respective feature sets. Which of these algorithms is the
best? Jockers and Witten [87] provide a comprehensive exami-
nation of top performing classification methods for authorship
attribution, including: Delta (a simple z-score-based method
prevalent in literary studies [82]), Nearest Shrunken Centroid,
SVM, K-NN, and Regularized Discriminant Analysis [70]
(other forms of discriminant analysis were successfully applied
to authorship attribution in the past [40], [179], [180] as well).
On a benchmark data set of English language prose, nearest
shrunken centroid and regularized discriminant analysis were
shown to be the best choices. Other studies have revisited the
utility of simpler approaches such as multivariate analysis via
PCA clustering and Delta [99], where both are shown to be
sufficient to address the problem of collaborative authorship
analysis (i.e., where two or more authors collaborate to pro-
duce a single text). The choice comes down to the specific
problem domain — one must select the right tool for the right
task. Thus, we turn our attention next to methods that are
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suitable for social media forensics.

C. Authorship Attribution for Small Samples of Text

The approaches discussed thus far have mostly been applied
to problems in which a large amount of text is available
(e.g., novels, essays, newspaper articles, etc.). What do we
do when we do not have that luxury? A tweet, for instance,
is a mere 140-characters long, and does not yield a large
amount of information at the word-level, or from its syntactic
structure. Even before the advent of social media, researchers
had been investigating this problem in the context of forensic
stylometry in e-mails, where short form writing is the norm.
Some of the strategies we discussed above, such as similarity
measures [27], [109] and SVM [113], [152] apply directly, but
better performance can be achieved with features and classi-
fication approaches custom-tailored for attribution problems
with small samples of texts.

Anderson et al. [6] and de Vel et al. [46] turned to a variety
of character-level statistics such as capitalization, white space,
and punctuation counts to compensate for the small amount of
information inherent in such content. More specific to Internet
messaging, they also evaluated structural attributes of the
messages including the presence of a greeting, farewell, and
signature in the text. Combined with SVM for classification,
these features were shown to be reasonably effective (classi-
fication accuracies typically between 80-100%) for attribution
problems consisting of a small number of authors (three).
Early to note idiosyncratic usage, Koppel and Schler [106]
looked at specific error patterns including sentence fragments,
mismatched tense, and letter inversion as style markers for e-
mail. When combined with decision trees, such features alone
can achieve nearly 70% classification accuracy for a corpus of
11 authors.

In turn, Sanderson and Guenter explored using “Author
Unmasking” [111] to address this problem [158]. The idea
behind author unmasking is that the differences between two
texts from the same author will be reflected in a relatively
small number of features. This set can be extracted by use of
an author unmasking curve, which corresponds to the accuracy
of an SVM classifier when essential features are repeatedly
removed. However, it was shown that there is significant alias-
ing between different-author and same-author performance
curves when considering samples of 5,000 words or less. The
sequence-based approaches of Character-level Markov Chains
and Character-level Sequence Kernels [189] are suggested
as alternatives. Partial parsing for short texts, which is a
compromise between complete parsing and chunking (i.e.,
phrase labeling), was described by Hirst and Feiguina [74].
When features from partial parsing are combined with SVM,
high accuracy can be achieved (over 90%) for samples as small
as 200 words. The downside of these particular works for
forensic examiners primarily concerned with amateur writing
on the Internet is that the corresponding evaluations only
simulated the form of short writing found there.

Small samples of text outside of the realm of natural lan-
guage are also an interesting test case for attribution algorithm
development. Source code, by its very nature, consists of
small routines like functions or methods, which can reflect

certain stylistic traits of the programmer. Source-code attri-
bution is used for cybercrime forensics [172] and plagiarism
detection [58], but some methods [59], [60], [115] generalize
beyond code to all languages (formal and natural), making
them attractive for social media analysis. What features are
effective for identifying the authors of code? Some are very
task dependent, such as the line, comment, operator, and
operand counts suggested by Hayes [72]. Others are based on
n-gram features, which consist of sequences of tokens [32].
Frantzeskou et al. [59], [60] extended this idea with two key
differences: the use of raw frequencies of byte-level n-grams
and a simple overlap measure for classification. We will look
at this Source Code Authorship Profiling (SCAP) methodology
in more detail in Secs. III and IV.

Further along the lines of programming language authorship
attribution, the state of the art for de-anonymizing program-
mers shows significant promise for the analysis of short
samples of text. The best reported methodology makes use
of features derived from abstract syntax trees. Caliskan-Islam
et al. [34] applied this methodology to code stylometry, where
random forest classifiers were trained from a very large (e.g.,
“120,000 features for 250 authors with 9 solution files each’)
set of lexical, layout and syntactic features from the abstract
syntax trees of target source-code solutions. Information gain
was applied to select only the more informative features,
making the approach more accurate and the computation more
tractable. When validated on code solutions that were, on
average, 70 lines of code long, accuracies for distinguishing
between sets of 1,600 and 250 programmers reached 94% and
98%. This methodology is not constrained to just source code
— Caliskan-Islam et al. also demonstrated its applicability to
executable binaries [35].

The authorial style of malicious source code often percolates
through other media where short-form writing is prevalent.
Afroz et al. [3] conducted a large-scale study of posts on
underground forums related to password cracking, spam, credit
card fraud, software exploits, and malicious search engine
optimization. Given the tight coupling between the culture
of the computer underground and the code it develops, com-
mon lexical features are often present. Afroz et al. suggest
several that are amenable to SVM classification: character-
level unigrams and tri-grams, word-level bi-grams, numbers
used in place of letters, capitalization, parts of speech, and
the presence of foreign words. These features are directly
applicable to social media at large, and we will consider
several of them in our practical walk-through of authorship
attribution below.

It is also possible to gather more information out of limited
sample sizes by looking for primitive sound features. Forstall
and Scheirer introduced the concept of the functional n-
gram [57], which applied at the character-level, is an n-gram-
based feature that describes the most frequent sound-oriented
information in a text. Similar to function words, functional
n-grams are those n-grams that are elements of most of the
lexicon, necessitating their use. While originally developed for
the analysis of poetry and other fragmentary literary writing,
this feature is genre-independent, and can be used for social
media forensics to generate over a hundred independent feature
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dimensions from a tweet. The utility of these features was also
demonstrated for a similar task of influence detection [56],
whereby one author’s influence on another is gauged by
comparing stylistic commonalities between their respective
texts.

Table IX provides a summary of the work in authorship
attribution for short samples of text described above, along
with the database used in the analysis. While many approaches
have been suggested, very few works have examined the fun-
damental problem of authorship attribution for small samples
in a theoretical sense. How small can we go before the signal
becomes lost in the noise? Eder examined this problem in
a method-independent manner [49], and determined that for
modern languages, the minimal stable sample size is 5,000
words. Curiously, this is in direct opposition to the prior
work we have just discussed. The finding suggests that some
instances of authorship attribution are domain dependent —
Eder examined modern language novels, a prose form that is
rather distinct from the type of writing typically found on the
Internet. Particularly with respect to authors attempting to have
impact in 140 characters, a personal style is likely to be honed
and more forcibly deployed on Twitter.

D. Authorship Attribution Specifically for Social Media

A growing body of work has attempted to mine and analyze
actual online postings. Abbasi and Chen produced a body of
work that included an analysis of eBay comments and online
forum posts [2]. A Karhunen-Loeve transform-based tech-
nique dubbed “WritePrints” was applied to this data, showing
accuracy as high as 94% when differentiating 100 distinct
authors. With the appearance of Twitter in 2006, the problem
grew significantly more difficult. To date, only a handful of
researchers have tackled the authorship attribution problem for
tweets collected in the wild using the techniques described
above. Methods relying on SVM for classification [18], [67],
[139], [166], [169] outperform other approaches to authorship
attribution on tweets [166], namely Naive-Bayes [5], [23],
Source-Code Authorship Profiling [116], and other simple
similarity measures [85], [96], [144].

Almost all of these approaches used the same set of features,
character- and word-level n-grams. These features are typically
parameterized via empirical performance: n = 4 for character-
level n-grams [113], [116], and n = (2,...,5) for word-
level n-grams in a traditional bag-of-words model (which
we will describe in detail in Sec. III). A limiting factor has
been the difficulty of learning useful decision boundaries from
short messages with the typical implementations of common
supervised machine learning methods. Other strategies also
exist outside of the definition of specific feature sets for small
texts of any type. Arakawa et al. [7] explored a Twitter-specific
approach that assessed the type and number of retweets.

A further complication is the need for automatic language
understanding for Eastern and Near Eastern language posts,
where non-Latin character sets are used, and individual char-
acters may express entire words. While language-dependent
approaches like partial parsing fail without substantial retuning
in such cases, language-independent character-level n-gram-
[97], [149] and TF-IFD-based [4] approaches work just fine

for non-Latin characters with no adjustment. For Arabic,
elongation (characters are extended for stylistic purposes),
inflection (many stem words are derived from a common
root), and diacritics (marks above or below characters that are
used to indicate special phonetic values) all present additional
information in the feature space. Abbassi and Chen designed a
specialized feature set that captured this information, and used
it to determine the authorship of posts to a forum associated
with the Palestinian Al-Aqgsa Martyrs group’ [1].

One might also ask if a writing style evolves over time
in a way that is unique to a specific social media platform
like Twitter. Azarbonyad et al. [11] have studied this question,
and have isolated distinct vocabulary changes for the same
authors of tweets over a period of months. The cause might
be as simple as a change in the circumstances of an author’s
life, or as nuanced as the absorption of stylistic traits after
reading the tweets of others. It is possible to design a time-
aware attribution algorithm that constructs a language model
for distinct periods from an author’s collected messages, which
can be achieved by calculating decay factors that are applied
as weights to the periods. Using character-level n-grams as
a feature basis, Azarbonyad et al. showed that a time-aware
SCAP approach is far more effective than a baseline without
any temporal weighting.

Going beyond lexical- and sound-oriented features, seman-
tic analysis can also be applied to attribution tasks. Seroussi
et al. [167] propose combining Latent Dirichlet Allocation
(LDA) and the Author-Topic Model approach to form a
Disjoint Author-Document Topic Model (DADT). In DADT,
author topics are disjoint from document topics, different
priors are placed on the word distributions for author and
document topics, and a ratio between document words and
author words is learned. The feasibility of this approach
has been demonstrated on emails and blog posts. However,
it is not always possible to perform meaningful semantic
analysis on sample sizes as small as tweets with any of
today’s topic modeling algorithms. In our own work, we
have found that the LDA implementations contained within
Mallet [130], Gensim [155], and R [83] all fail by producing
radically different match scores for the exact same input across
multiple trials. According to the literature [24], this stems
from random bootstrapping with inadequate sampling. LDA
is wonderful for modeling the types of large-scale corpora
found in electronic collections such as JSTOR or Wikipedia,
but available implementations are not designed with the same
set of assumptions under which a forensic investigator reading
posts on social media is operating. Surprisingly, a general
numerical solver that is stable over many small samples has
not been forthcoming.

More specialized semantic analysis approaches have been
proposed to address this shortcoming. By aggregating
tweets [77] into per-user profiles for training and testing, con-
ventional topic modeling algorithms can be applied with little
trouble. However, this strategy is not feasible if we are con-
sidering just a single testing tweet in an actual investigation.

7A modified version of the feature set was also used by Abbassi and Chen
to determine the authorship of posts to a US forum belonging to a group
associated with the Ku Klux Klan.
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Building from work in generative models for single small texts
with a single topic [119], [185], Zhao et al. [194] achieved sta-
ble results for semantic analysis applied to individual tweets.
This was done by modeling the tweet generation process as
sampling from a distribution for a chosen topic (as opposed to
a more complicated mixture for longer form text), based on the
assumption that an author has a single chosen topic in mind,
which is reflected in the tweet. Another potentially viable
approach is Brown clustering, which partitions the words in a
text into a base set of clusters, and creates a hierarchy among
them by optimizing the likelihood of a hidden Markov model
with a one-class-per-lexical-type constraint. By leveraging a
training corpus of aggregated tweets, Owoputi showed that
Brown clustering is feasible to apply on a per-tweet basis
during testing [146]. In all of these cases, it remains to be
seen if semantic analysis can be specific enough to stand by
itself as an authorship attribution method. More realistically, it
is likely to be useful as an additional feature dimension within
a larger feature set. Table X provides a summary of the work
in Eastern and Near Eastern languages, authorship attribution
for social media, and semantic analysis for short texts.

E. The Threat of Counter-Attribution

Naturally, in authorship attribution, there exists some el-
ement of the “offense and defense” dynamic present in
the broader world of computer security. Counter-attribution
techniques, where there is an intentional act of changing
one’s writing style, have emerged to thwart authorship attri-
bution systems. An admirable goal of counter-attribution is
to facilitate anonymous free speech on the Internet [142].
Of course, counter-attribution can be misused by malicious
actors attempting to evade identification by various authorities.
Nonetheless, several strategies exist that could be used for
legitimate or illegitimate purposes.

Kacmarcik and Gamon [94] describe shallow anonymiza-
tion, whereby 14 changes per 1,000 words disrupts an SVM
classifier trained with function words, and deep anonymiza-
tion, whereby increasing numbers of feature modifications
defeat an approach relying on the rate of degradation of the
accuracy of learned models [107]. Juola and Vescovi [92] stud-
ied the impact of the Brennan-Greenstadt corpus [26], which
was cleverly crafted to deliberately mask style, on the Java
Graphical Authorship Attribution Program®. The Brennan-
Greenstadt corpus makes use of the following strategies for
counter-attribution: obfuscation (i.e., identity hiding), imita-
tion (i.e., the deliberate misappropriation of another author’s
style), and translation (i.e., the use of machine translation to
alter an author’s signal). The findings of Juola and Vescovi
indicate that all common feature sets are impacted by counter-
attribution, but some less than others (e.g., character-level n-
grams).

Fundamentally, if an author’s signal is scrubbed from a
text, we would have to turn to other evidence associated with
the case to make a confident attribution decision. However, it
remains unknown whether or not a perfect counter-attribution

8https://github.com/evllabs/JGAAP

solution can be developed, given the vast linguistic feature-
space of any underlying text. The Anonymouth framework of
McDonald et al. [131] is a step in this direction, but for prose.
It is an open question as to whether or not an anonymization
framework like this can be applied to small samples such as
tweets.

III. WALK-THROUGH OF AUTHORSHIP ATTRIBUTION
TECHNIQUES FOR SOCIAL MEDIA FORENSICS

In the previous section, we surveyed what is available in
the literature for authorship attribution, and looked at specific
approaches that are suitable for social media forensics. In this
section, we will walk through the process of identifying the
author of a given set of tweets from Twitter. This material is
meant to illustrate the process for newcomers to the field, and
highlight the difficulty of the problem when examining very
small messages.

The basic strategy we will look at relies on a set of features
capturing patterns extracted from the original texts in a bag-
of-words model dynamically created for a set of users’. When
creating a bag-of-words model, we can consider one model for
a set of authors or one model per author. A dynamic model for
each author could allow for a more fine-grained stylometric
evaluation, while a general bag of the most frequent patterns
comprising many authors at the same time may overlook some
discriminative features of particular authors, as those features
may not be strong enough to appear globally. However, as
the number of authors increases, creating a dynamic model
for each investigated author is much more time consuming.
In both cases, the bag-of-words model works as a projection
space in which we aim to highlight similar patterns of a
particular author or set of authors, while decreasing other
patterns not in accordance with the overall style for those
authors of interest. For computational efficiency, we will
consider the case of a model per set of authors.

Various classification methods are applicable to this prob-
lem. We address high-dimensional feature representations us-
ing variants of one of the most used classifiers in the literature:
the Support Vector Machine. Specifically, we show that it
is worth exploring implementations that better handle large-
scale classification [192] with respect to accuracy, as well
as speed of processing. For open set attribution problems,
classifiers specifically designed to mitigate the risk of the
unknown are of interest [163]. To provide a comparison to
SVM-based classifiers, we also look at Random Forests, as
recent work in machine learning singles them out as very
efficient and effective for various classification tasks [55].
Alternatives to all of these more general supervised machine
learning-based approaches are provided in the form of Source
Code Authorship Profiling (SCAP) [175] and compression-
based attribution [183].

The source code for all implemented algorithms in this
article will be publicly released following publication.

Much of what we discuss below can be implemented via the Stylo
package [51] in R.
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A. General Framework for Authorship Attribution

Fig. 1 depicts a general framework for the authorship
attribution system we will consider here. For social media
analysis, we recommend an approach that scales well with a
large number of suspects. A typical scenario could be a tweet
that describes illicit activity, sent anonymously from within a
small company (from a handful up to five hundred employees).
If there is no physical evidence linking one of those employees
to the message, all employees become suspects, and the use
of a machine learning approach becomes paramount.

During training, messages are harvested from the social
media accounts of known suspects (Sec. III-B1). After enough
examples have been collected, the raw data is pre-processed
(Sec. III-B2) to remove very sparse features, very short mes-
sages, and non-English messages, which enforces consistency
in the subsequent feature extraction. In this article, we evaluate
character-level n-grams, word-level n-grams, part-of-speech n-
grams, and diverse lexical and syntactic statistics as features
(Secs. III-C1, III-C2, III-C3 and III-C4). All features are
collected into feature sets (Sec. III-C) that are based on the
common bag-of-words model in natural language processing.
These feature sets are then used to train a binary or multi-
class classifier, depending on the number of users consid-
ered. For classification, we examine the utility of the Power
Mean SVM (Secs. III-D1), W-SVM (11I-D2), Random Forests
(Sec. III-D3), SCAP (Sec. III-D4), and compression-based
attribution (Sec. III-D5).

Testing begins with a message of unknown authorship,
which proceeds through the exact same feature extraction
process as the training messages. The resulting feature vector
is submitted to the pre-trained classifier, which produces a
prediction of its authorship. This result points out the most
probable suspect from a set of possible ones.

B. Source Data from Twitter

Two preliminary steps are required before feature extraction
and classification: data extraction and text pre-processing.

1) Data Extraction: Since the ultimate forensic goal is
authorship attribution, all the retweets, which are messages
retransmitted from other users, should be removed. This is
done by removing all tweets marked by the Twitter API with a
specific retweet flag, as well as tweets containing the meta tag
RT [116], [166]. Our focus is on English-language tweets, thus
non-English tweets can be removed using the python library
guess-language [173], which itself uses the spell-checking
library pyenchant [95] to build an accurate prediction of the
language of a text consisting of three or more words. For this
reason, we recommend removing all messages that contain
only one or two words. This is not done to the detriment of
accuracy — these short messages do not provide meaningful
information about the author and end up introducing noise into
the classification task [166].

2) Text Pre-processing: From our experience, there is no
need for strong pre-processing in authorship attribution. This is
an artifact of the choice of features we commonly use. While a
writer’s preferences for letter capitalization and word suffixes,
along with their grammatical mistakes, may frustrate many

natural language processing systems, they are also an integral
part of their writing style. In this context, it does not make
sense to stem words or correct the grammar of messages under
consideration. While such actions would greatly reduce the
number of features to be analyzed, they would also remove
many idiosyncrasies, which are unique to a user [116], [166]
such as Internet expressions, repeated grammatical mistakes,
abbreviations and even preferences for certain Emojis'®.

Therefore, instead of more elaborate tokenization [143],
[146], our pre-processing will focus on normalizing very
sparse characteristics such as numbers, dates, times and URLs.
These are relevant characteristics in some sense, but it is
unlikely that a user will be sharing, for example, the same date
many times. Hence the pre-processor takes away the original
text and replaces it with a standard tag that represents the
replaced content.

Moreover, it has been noted that hashtags11 and user ref-
erences'> make authorship attribution easier [116]. A user
might repeatedly use the same hashtag or frequently address
messages at a single person. However, it also makes super-
vised learning methods unreliable, because a user might make
references to the same person across her messages, creating
a strong bias towards that particular feature in training; and
any message with a reference to that same person would
subsequently be misclassified as being from that user.

In the following example, we show three tweets before
and after the aforementioned pre-processing procedure. The
“after” examples contain each type of tag.

Before pre-processing:

Tweet 1: “Do not forget my bday is on 03/27
#iwantgifts”

Tweet 2: “@maria I will be sleeping @00:00AM”
Tweet 3: “Check out this amazing website:
http://www.ieee.org”

After pre-processing:

Tweet 1: “Do not forget my bday is on DAT TAG”
Tweet 2: “REF I will be sleeping @TIM”

Tweet 3: “Check out this amazing website: URL”

C. Bag-of-Words Model

The bag-of-words is a classic model in natural language
processing. It is an orderless document representation of
feature frequencies from a dictionary [157]. Although the
term “word” is found in the model’s name, the dictionary
may consist of groups of word- and character-level n-grams,
or any other features that can be extracted from text. For
natural language processing tasks such as information retrieval
and sentiment analysis, it has been suggested that function
words should be removed [126]. However, for a task such as

10Emojis are small images used to express ideas or sentiment in text
messages and now social media. With roots in Japan, the word emoji literally
means “picture” (e) + “character” (moji).

'Hashtags are keywords used in tweets and other social media to make
searching for messages with a common topic easier; usually they are preceded
by a ‘# character and found amid the text.

12The users of Twitter and other social media platforms can send messages
to other users using an ‘@’ character followed by their username.
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authorship attribution, function words can sometimes provide
more information about the author than more meaningful
words [57].

That observation is largely derived from Zipf’s law [200],
which states that the frequencies of the words are inversely
proportional to their rank in an overall frequency table. Even
though the most used words vary for each author, they are
always among the function words, thus they become reliable
features across even very large populations of authors. We
could extract many of the nuances of style for a particular
author by looking at the function words alone [133]. But in
authorship attribution for very short messages, it is paramount
to gather as many features as possible. Due to the compressed
nature of such messages, most of the words contained in a
single text are likely to appear only once.

Let us work through an example of the bag-of-words model
that strives to maximize the amount of information that will
be available for feature extraction, starting with the following
two lines of Shakespeare, which will serve as our short
“messages’:

Text 1: “To be, or not to be, that is the question.”
Text 2: “To die, to sleep. To sleep, perchance to
dream;”

In the first step, we create a dictionary that maps each feature
onto a unique index. In this example, which is shown in Table
II, we simply use the words from each line as the features.
The descriptive indices are then used to define the structure
of the feature vectors.

TABLE II: Dictionary for a bag-of-words model derived from
two lines of text. Such a dictionary defines the structure for
feature vectors that can be used in conjunction with supervised
machine learning.

# 1 2 3 4 5 6
Word | to be or not that is

# 7 8 9 10 11 12
Word | the | question | die | sleep | perchance | dream

With the dictionary, we can create individual feature vectors
based on statistics calculated from the texts. This could be
as simple as using the raw frequency of each word (i.e.,
the counts of the words in an individual example text), but
other statistics might be considered as well, such as term
frequency—inverse document frequency (tf-idf) scores [57]. In
this example, we will use binary activation vectors that indicate
the occurrence of the feature (1) or its absence (0). Binary
activation is effective for small messages because in most
cases, words will not be repeated, and the few that are should
not bias the final outcome. Using that strategy, the final feature
vectors for this example are:

Feature vector 1: [1, 1,1, 1,1, 1, 1,1, 0, 0, 0, 0]
Feature vector 2: [1,0,0,0,0,0,0,0, 1, 1, 1, 1]
The bag-of-words model is used throughout the rest of this
article, and its dictionaries are constructed using character-
level n-grams, word-level n-grams, part-of-speech n-grams,
and diverse lexical and syntactic statistics as presented below.

1) Character-level n-grams: Character-level n-grams are

often used for authorship attribution in texts from social media

because they can capture unusual features, such as emoticons
and special use of punctuation. They also help mitigate the
effect of small typos that authors do not repeat very often,
which are not style markers. For example, for the word
“misspeling”, the generated character-level 4-grams would still
have “miss,” “issp,” “sspe,” “spel” and “ling” in common with
the 4-grams generated for the correct word “misspelling.”

Following the literature [116], [158], [166], we focus on
character-level 4-grams herein, with whitespace and meta tags
included in the n-grams. With respect to Twitter, whitespace is
appended at the beginning and at the end of each tweet. Also,
we discard any character-level 4-gram which does not appear
at least twice for the same author [166] in the training set,
thus eliminating hapax legomena (features that occur exactly
once in a particular setting). This decision improves efficiency
by removing noisy features that are unlikely to appear again
in the future for the same user.

The features are case-sensitive, since the author’s preference
for capitalization of letters is also one of the traits that can
be used for attribution. Many users of social media have a
preference for capitalizing some words to emphasize them or
writing in the exaggerated camelCase form'?.

The following example shows a punctuation rich phrase and
the complete list of 4-grams extracted from it (for readability,
we replaced spaces with ‘_’):

Text: “2B!!!! or n2B!!!!!1 ;)”
4-grams: 1. “_2B!” 2. “2B!!” 3. “BlII” 4. “11”
5.7 6. “!1_o0” 7. “!_or” 8. “_or_" 9. “or_n" 10.
“r_n2” 11. “_n2B” 12. “n2B!” 13. “2B!!” 14. “B!!!”
15, <17 16, “ir 17, < 18, «“ii 19, «“i_»
20. “N_5” 210 %1 5)7 22, %) 7

This approach is able to isolate the repeating patterns
of exclamation marks and the emoticon'*. If we included
character-level n-grams for other values of n, we would gener-
ate redundant data either by repeating something captured by
n = 4 when choosing n < 4, or by capturing a crude proxy
for word-level unigrams (another feature we will deploy) when
n > 4. Having the same feature duplicated in the training set
creates a bias towards it, which is undesirable.

2) Word-level n-grams: Word-level n-grams let us capture
more semantically meaningful information from a text in
the form of short phrases [98]. When considering messages
from social media, the constraints placed on message length
force users to be more judicious in their writing. Thus, it is
reasonable to assume that authors will economize, and only
repeat very short phrases [166]. Punctuation sequences can
also be included, considering that they may be a significant
component of a phrase.

A good rule of thumb is to use word-level n-grams where
n € {1,...,5}, but special consideration should be given to
the unigrams (1-grams). Character-level 4-grams will generally
include many of the unigrams, and their use substantially
increases the length of the feature vectors. However, contrary

13camelCase is a style that alternates between lower and upper case letters
e.g., “ExXAmPIE”.

“Emoticons should not be replaced by meta tags because they are an
integral part of internet culture. Users of social media may very well have a
particular combination of emoticons they use on a regular basis [169].
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to their typical characterization in the literature, we will show
that they can improve classification performance when used
under the right circumstances. Similar to our treatment of
leading and trailing whitespace for the character-level n-grams,
meta tags are used at the beginning and end of each tweet to
distinguish words frequently used to start and to end messages.
All word-level n-gram features are also case-sensitive. Similar
to the procedure for character-level n-grams, we also eliminate
hapax legomena for word-level n-grams.

The following example shows a simple phrase and the
complete lists of unigrams, bigrams, and trigrams extracted
from it":

Text: “To be, or not to be, that is the question.”

[T L T3

Unigrams: (“To”, “be”, “or”,
“that”, “iS”, “the”, “queStiOH”)

nOt”, “tO”, “be”,

Bigrams: (“BEGIN To”, “To be”, “be or”, “or not”,
“not to”, “to be”, “be that”, “that is”, “is the”, “the
question”, “question END”)

Trigrams: (“BEGIN To be”, “To be or”, “be or not”,
“or not to”, “not to be”, “to be that”, “be that is”,
“that is the”, “is the question”, “the question END”)

For n-grams in general, feature vector length varies as a
function of the choice of n, the number of known authors,
and the number of texts considered during training. For word-
level n-grams, the vector length can grow rapidly. For instance,
when n = 4 the feature dimensionality varies from 20,000-
dimensional vectors (50 users and 50 training tweets per user)
to around 500,000-dimensional vectors (500 users and 500
tweets per user). Although some researchers have argued for
n < 4 as a default setting (e.g., Forstall and Scheirer [57]
used n = 2), for messages from social media, we need a
larger n to capture the idiosyncratic language usage of the
Internet, which includes emoticons, onomatopoeia (a word that
resembles its associated sound, e.g. cuckoo), abbreviations,
and other unconventional usage.

Moreover, some work in the literature has consciously
avoided the use of word-level unigrams for message charac-
terization and feature generation. This is because unigrams
are supposedly captured by character-level n-grams [166],
and subject to the explosion in dimensionality of the feature
representation (in the worst case, a probability value would
be assigned to each word in the document under analysis),
which hampers the classification process. However, in Sec. IV,
we show that unigrams, when combined with character-level
n-grams, improve the classification accuracy of authorship
attribution for social media, and researchers must take them
into account when exploring solutions in this field.

3) Part-of-speech (POS) n-grams: The simplest stylistic
features related to syntactic structure of texts are part-of-
speech (POS) n-grams [122]. POS tagging is a process that
can be performed easily and with relatively high accuracy.
Given a POS tagger that has been trained with texts possessing

151n the example, we used “BEGIN” and “END” to mark the start and end
of the text, although when implementing this in code we used non-printable
characters to avoid mismatching with the respective English words.

similar properties to the ones under investigation, it can
achieve near-optimal accuracy at the token level [182]. Noise
in stylistic measures can significantly affect the performance
of the attribution model; POS tags are one way to mitigate
this concern because they reduce the feature-space to a limited
number of very general elements.

As described above, the texts found in social media are
usually characterized by peculiar use of language. Each social
network essentially defines its own textual genre based on
service-specific characteristics (e.g., Twitter only permits short
messages). In this study, we use a POS tagger specifically
designed for tweets in English [65]. A POS tagset of 25 tags,
covering twitter-specific features like hashtags, at-mentions,
retweets, URLs and emoticons was used [7]. Previous studies
using this POS tagger report a tagging accuracy of about 90%
at the token-level for English tweets [65].

The following example shows the output of the POS tagger
for tweet B.2 from Sec. I:

Tweet: “Thx 4 having me. Great time w/ you all”

POS tags: (“N”, “P”, “V”, “O”, “W”, “A”, “N”, “P”,
“0”, “D”)
where tags “N”, “P”, “V”, “O”, “W”, “A”, and “D” correspond
to common noun, preposition, verb, pronoun, punctuation
mark, adjective, and determiner, respectively. Appendix B
shows the complete set of POS tags considered here.

4) A More Diverse Feature Set for Open Set Attribution:
Open set recognition problems are among the hardest in
machine learning — and authorship attribution in this setting
is no exception [181]. In open set attribution, we have the
expectation that many samples from unknown authors will be
submitted to an attribution model, all of which should not
be assigned association to any known author. Given the scale
of data found on social networks, this means that a model
could assess millions of negative samples, while rarely (if
ever) encountering samples from a known author. To introduce
the concepts of open set attribution, we consider the most
basic matching scenario in this article: authorship verification
via pair matching. Given two tweets, a prediction is made
as to whether or not they are from the same author. Even
for this very simple scenario, a feature set that is limited to
just n-grams, which is effective for closed set attribution (e.g.,
all authors seen at testing time are known at training time),
does not yield enough information diversity to make accurate
predictions. Thus we must turn to feature-level fusion over
more diverse feature types to capture additional facets of style
at the character and word levels, which will allow us to match
many common elements across samples.

Feature-level fusion is the process of combining different
individual features that have been extracted from the input text
samples into one feature vector before training or classification
takes place. This blending is a concatenation meant to lift
the accuracy of machine learning by enhancing classification
with longer, and ideally more distinct, feature vectors. For
the assessment of whether or not two samples of text are by
the same author, the process begins by calculating 71 distinct
features derived from the basic set listed in Table III. This is
followed by a concatenation operation to build a single feature



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2016 13

Feature Type

Number of exact-word matches

Number of stem-based matches

Number of unique forms of matching stems

Number of unique forms of matching words

Mean frequency of word matches

Minimum frequency of word matches

Sum of inverse frequencies of word matches

Mean frequency of all words

Minimum frequency of all words

Sum of inverse frequencies of all words

Mean tf-idf score of matching words

Sum of tf-idf scores of matching words

Max of tf-idf scores of matching words

Mean tf-idf score of all words

Sum of tf-idf scores of all words

Max of tf-idf scores of all words

Distance between two furthest matching words
Combined distance between two furthest matching words
Distance between the lowest frequency words

Distance between the two highest tf-idf frequency words
Fraction of matching character-level unigrams out of total
Fraction of matching character-level bigrams out of total
Fraction of matching character-level trigrams out of total
Similarity of bigram frequencies between two strings
Similarity of trigram frequencies between two strings

TABLE III: Diverse feature types generated for the open set
attribution approach, which needs to rely on more statistical
information than just n-grams because of the difficulty of
the underlying problem. 71 features derived from these basic
categories are used for the authorship verification approach
described in this article.

vector. Such a feature vector can then be used as a training
sample, or as a testing sample that we would like to make a
prediction about. These features broadly fall into the following
three categories: (1) frequency of word matches, (2) frequency
of all words, and (3) character-level n-grams. With pairs of
texts available, features can be generated by considering each
sample individually, or together. Further, some features utilize
additional information from the aggregate tweets for an author
(e.g., used as the “document” in tf-idf calculations), or entire
corpus (e.g., a frame of reference to determine whether or not
a word is rare in general). The reference code that will be
included in the final version of this paper details the exact
parameters for each feature.

D. Classification Strategies

We now turn our attention to the five classification strategies
considered in this study: the Power Mean SVM, W-SVM, Ran-
dom Forests, Source-code Author Profile, and Compression-
based Attribution.

1) Power Mean SVM (PMSVM): While most of the super-
vised machine learning-based approaches described in Sec. II
make use of a traditional formulation of the SVM classifier,
one downside is that it does not handle large training data sets
and high-dimensional feature vectors very well. This is one of
the reasons why researchers have avoided unigrams thus far
for feature representation, despite their discriminative power.

An alternative is the Power Mean SVM (PMSVM) formu-
lation [192], which was originally proposed for large-scale
image classification. The power mean kernel generalizes many
kernels in the additive kernel family. These kernels directly

apply to applications such as image and text classification,
where the data is well represented by histograms or bag-of-
word models. Also, this kernel family is not very sensitive
to parametrization, avoiding overfitting to the training data.
It has been shown that additive kernels are more accurate in
problems with millions of examples or dimensions [192].

The power mean kernel aggregates the advantages of linear
SVM and non-linear additive kernel SVM. It performs faster
than other additive kernels because, rather than approximating
the kernel function and the feature mapping, it approximates
the gradient function using polynomial regression. This ap-
proach outperforms fast linear SVM solvers (e.g., LIBLINEAR
SVM [54] and Coordinate Descent SVM [84]) by about 5x
and the state-of-the-art additive kernel SVM training methods
by about 2x (e.g., HIK SVM [191]) [192]. Therefore, this
kernel converges using only a small fraction of the iterations
needed for the typical linear solver when faced with a large
number of features and training samples.

An SVM kernel « is additive if it can be written as a sum
of a scalar function for each feature dimension d, i.e., for two
vectors Z and ¢,

d

K(f,:lj) = Z"{(ajiayi)a (1)

i=1
and a power mean function M, is defined by a real number
p € R and a set of positive numbers x1,...,x, € R:

1
> i xf) i

n

My(a1, ... ) = ( @)
Many of the additive kernels are special cases of the power
mean function, including the X2, Histogram Intersection and
Hellinger’s kernels [192]. The power mean kernel for two
vectors &, 7 € R is a generalization of those three kernels:

d
My (Z,§) =Y Mp(xs,s)- (3)
i=1

Wu proved in [192] that the kernel is well defined for any
value of p. Usually, this formulation would lead to higher
training times, but the PMSVM algorithm uses the coordinate
descent method with a gradient approximation to solve the
dual SVM problem. As a result, training is also faster and the

approximation avoids overfitting to the training data [192].
2) W-SVM for Open Set Attribution: One of the best per-
forming algorithms for open set supervised machine learning
is currently the W-SVM [163], a Weibull-based formulation
that combines a 1-Class SVM with a binary SVM, both with
non-linear kernels. Why does such an algorithm help us for this
problem? First, a binary model gives us an explicit class for
rejection in the authorship verification scenario we introduced
in Sec. III-C. Second, when Weibull modeling is coupled
with a 1-Class SVM with a radial basis function kernel,
it can be proved that the probability of class membership
decreases in value as points move from known training data
toward open space (See the proofs in Sec. 3 of [163]). Third,
the Weibull distribution provides better probabilistic modeling
at the decision boundary for a binary SVM. The key to
the algorithm’s effectiveness in both cases is the use of the



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2016 14

statistical extreme value theory (EVT) [43], from which the
Weibull distribution is derived.

A problem such as open set authorship attribution is difficult
because there are often small interclass distances in the feature
space — in some cases, an author’s style is very similar to
that of other authors, as a function of education, influence
or culture. The W-SVM ensures that the probability models
do not treat data at the decision boundaries as low probabil-
ity members of a class, where separation between different
authors in a raw distance sense may be close. The W-SVM
training algorithm consists of four distinct steps split into
two different classification regimes: 1-Class and Binary. These
steps can be summarized as follows:

¢ 1-Class RBF SVM Training. The objective of the 1-Class
SVM [165] is to find the best margin with respect to
the origin. The resulting binary classification function f°
after training takes the value +1 in a region capturing
most of the training data points, and —1 elsewhere. For
authorship verification, this model is trained only with
pairs of samples by the same author.

e 1-Class RBF SVM EVT Calibration. The probability
of class inclusion for a 1-Class SVM can be modeled
by fitting a Weibull distribution to scores generated by
classifying the training data {x1, 2, ...,2,,} using the
corresponding trained model f°. This provides a set of
scores from which the extrema (a sampling of the tail
not exceeding 50% of the overall number of scores)
are used for modeling. If the 1-Class SVM predicts
P(y|f°(x)) > ¢, via the Weibull Cumulative Distribution
Function (CDF), even with a very low threshold 4., that
a given input z is a member of class y, then we will
consider the binary classifier’s estimates. A rejection at
this step means there is likely no relationship between
the two samples of text being compared.

o Binary RBF SVM Training. The 1-Class SVM serves as
a good conditioner for decision making, but it is well
known that the 1-Class formulation tends to overfit the
training data from the positive class [125], [164], [199].
Some knowledge of known negative pairs during training
improves discrimination by enforcing separation between
known classes. This means that when a model f is trained
with positive pairs from the same author, and negative
pairs from different authors, it can generalize to unseen
samples much more effectively than the 1-Class SVM.

e Binary RBF SVM EVT Calibration. Different from the
1-Class case, EVT distributions are fit separately to the
positive and the negative scores from f. To produce
a probability score for an SVM decision f(x), two
CDFs are used. Given a test sample z, two independent
estimates for P(y|f(x)) are possible: P,, based on the
Weibull CDF derived from the matching pair scores, and
Py, based on the reverse Weibull CDF derived from the
non-matching pair scores, which is equivalent to rejecting
the Weibull fitting on the non-matching class scores.

3) Random Forests (RFs): Random Forests is a method
which comprises a collection of classification or regression
trees, each constructed from a random resampling of the
original training set. Following the notation provided in [25],

let a training set be £ = {(x;,v;), ¢ =1,2,..., N}, where N
is the number of samples, x; is the vector of attributes and
yi € {1,2,...,C} is the n-th example in the training set.
Random Forests rely on the concepts of bootstrap aggregation
and bagging applied to tree learners.

With a training set £, the bootstrapping consists of re-
peatedly selecting random samples with replacement from the
training set and fitting different trees to such samples. This
process is repeated B times. In each iteration b out of B, we
sample with replacement N examples from £, creating L5, and
train a classification tree'® f, on L. After training, we can
predict the outcome of unseen examples x; by majority voting
considering the individual classification trees on Xx;. In addition
to the bootstrapping process described above, RFs also use
a modified tree learning algorithm, which selects a random
subset of the features for each candidate split (tree) in the
learning process, a process oftentimes referred to as “feature
bagging.” For more information about Random Forests and
their properties, we refer the reader to [25].

Besides classification, we can also consider the use of
Random Forests for measuring the importance of the features
at hand. The idea is to determine how the different features
contribute to the final attribution process. To measure the
importance of each feature f; in a vector ¥ € R", the values
of the features in the training data are permuted and the error
is computed on this perturbed data set for each tree in the
forest. The importance score for f; is computed by averaging
the difference in the classification error before and after the
permutation over all trees in the forest. The score is then
normalized by the standard deviation of these differences.

For a more meaningful understanding of feature importance,
we can group sets of features of the same type and cast a
vote for them each time a feature of that group appears in
the 100 most important features. This gives us an idea of the
importance of a given group, instead of just individual features.
For instance, suppose a feature vector is composed of four
different sets of features, e.g., 1:4-grams at the word-level.
Assuming we focus on the 100 most important features for
each set, each time a feature of a set appears in the top 100,
it casts a vote (weighted by the rank position) to that set. If
only features from the unigram set, for instance, receive votes,
the final set importance will indicate 100% importance for the
unigram set and zero importance for the other sets.

4) Source-code Author Profile (SCAP): The methods de-
scribed thus far are instance-based, meaning that each tweet is
treated as a separate instance of an author’s style. In contrast,
profile-based methods first concatenate all available training
tweets per author and then extract a single representation from
them attempting to collectively describe the author’s profile.
In the evaluation phase, each tweet of unknown authorship is
separately processed and attributed to the author with which it
is most similar [175]. Since this training phase is very simple,
an inherent advantage of profile-based approaches is that they
can easily be scaled to additional candidate authors. A typical
example of the profile-based approach is SCAP, an authorship
attribution method originally proposed for source code [59],

16This process can also be applied to create regression trees.
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[60] that has also been applied to Twitter with promising
results [116].

SCAP builds a profile for each author that is based on
the k& most frequent character-level n-grams in the texts of
that author. Each evaluation text is also represented using
the list of its & most frequent character-level n-grams, with
attribution decisions made based on which author it shares
the most n-grams with. In other words, the similarity of a
text to each candidate author is measured by the intersection
of their profiles. This method has two parameters that have
to be fine-tuned according to the specific domain, genre, and
language of the documents. In this article, we followed the
suggestion of Layton et al. [116] that maximal values of k
(i.e., all available character-level n-grams are included in the
profiles) are appropriate for this domain. In addition, they
examined several n values for tweets in English and the best
results were provided for n = 4. Thus, we also use character-
level 4-grams for the experiments described in Sec. IV.

5) Compression-based Attribution: A popular and effective
method for authorship attribution is based on compression
tools [16], [37], [100], [183]. The main idea is that a text of un-
known authorship is more likely to be effectively compressed
with other texts of its true author rather than with texts of other
authors. Such an approach can easily be implemented using
off-the-shelf text compression algorithms like rar, bzip2, and
gzip [100], [145]. Compression-based methods do not extract
a concrete representation of texts with clearly defined features.
They are usually based on character sequences repeatedly used
within texts, and can identify common patterns between the
unknown texts and the candidate authors. The most successful
compression-based methods follow a profile-based paradigm.

For this article, we implemented and used a compression-
based method originally proposed by Teahan [183]. This
method uses Prediction by Partial Matching (PPM), one of the
most effective lossless text compression schemes, to compress
the concatenation of all available training texts per author.
Then, for a given document of unknown authorship D, it
calculates the document cross-entropy that corresponds to the
average number of bits per symbol to encode the document
using the author’s model,

1
H(L,pth):*glOngA(D), (4)

where p4 is the PPM model extracted from documents of
author A in language L, and D is a sequence of n symbols in
that language. The candidate author that minimizes document
cross-entropy is the most likely author of D. An important
parameter that needs to be set in this method is the order of
the PPM model that corresponds to the fixed order context of
a Markov approximation. Following indications from previous
work on authorship attribution based on this method [183], we
used a fixed order context of five. This model is henceforth
called PPM-5.

It should be noted that the implementations of PPM-5
and SCAP methods are slightly different with respect to the
text pre-processing stage as described in Sec. III-B2. Instead
of replacing numbers, dates, and timestamps with separate
symbols, each digit of a token that does not include letter
characters is replaced by the same symbol. Let that digit

symbol be “D”. For example, the tokens “11:00”, “2014”,
“12/12/2014” would be replaced by “DD:DD”, “DDDD”, and
“DD/DD/DDDD” while the tokens “1st” and “8tracks” will
remain the same since they contain some letter characters.

IV. EXPERIMENTAL RESULTS

Schwartz et al. [166] introduced a viable validation regime
for authorship attribution methods targeted at social media.
Thus, we use it here to examine the approaches we have
described above. This validation looks at two important aspects
of the problem: the impact of varying training set sizes, and
the impact of varying numbers of authors. This type of scal-
ability assessment is a key element of authorship attribution
evaluation [121]. Further, we will look at a separate validation
regime [164] for open set authorship verification, which lets
us control the amount of unseen data at evaluation time.

In this section, we describe the experiments that we per-
formed to examine the approaches introduced in Sec. III for
large-scale attribution tasks, which are common in this type
of forensics work:

1) A comparison of the performance of various feature
types using a fixed pool of 50 Twitter users using
PMSVM and Random Forests classifiers;

2) A comparison of the performance of various classifiers
by varying the number of Twitter users and feature types;

3) An assessment of algorithm efficiency and search-space
reduction;

4) An analysis on feature importance given a fusion method
using different groups of features;

5) A comparison of different methodologies for open set
attribution.

A. Data Set and Pre-processing

To our knowledge, no publicly available data set exists
for authorship attribution applied to social media forensics.
Moreover, the restrictive terms of use put in place by the
major social networks prohibit the dissemination of such data
sets. Thus, data from the existing research described in Sec. II
are largely inaccessible to us. In response to this, we created
our own large-scale data set that was designed with algorithm
scalability evaluations in mind.

The set was constructed by searching Twitter for the En-
glish language function words present in Appendix A [116],
yielding results from English speaking public users!”. These
results were used to build a list of public users from which we
could extract tweets by using the Twitter API. We collected
ten million tweets from 10,000 authors!® over the course of
six months in 2014. Each tweet is at most 140-character long
and includes hashtags, user references and links.

Although we could not use data from other researchers
due to the restrictions placed on us by Twitter’s terms of
service, the data set was created with the same methods used

7Public user data is not subject to any form of protection via copyright
law. However, the Twitter data extraction policy still applies, therefore this
data can be used but not shared.

18The Twitter API only allows the extraction of the most recent 3,200
tweets from a user.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO

10
Tweets per User

20 30 50

=>=All Features <&-Char 4-grams + Word {1:5}-grams

POS {1:5}-grams =<Char 4-gram
“*Word 1-gram ‘Word 2-gram

Word 3-gram Word 4-gram

Word 5-gram ‘Word {1:5}-grams

(a) Setup with 50 users training with 1..50 messages per user.

. YY, MONTH 2016

—

50 100 200

Tweets per User

500 1000

==All Features
POS {1:5}-grams

<@Char 4-grams + Word {1:5}-grams
“<Char 4-gram

“+Word 1-gram Word 2-gram
Word 3-gram Word 4-gram
Word 5-gram Word {1:5}-grams

(b) Setup with 50 users training with 50..1,000 messages per user.

Fig. 2: Relevance of each feature used by itself, or combined with other features for setups including 50 different Twitter
users. Here we used the PMSVM classifier (Sec. III-D1) in all cases. The character-level 4-gram is the best individual feature
set, and word-level 5-gram is the sparsest feature set. Unigrams (Word l-gram) also yields good performance, although
neglected in the literature thus far (Sec. IV-E shows this feature importance in a fusion scenario). The more advanced tagging
method, POS n-grams, does not yield good results in isolation but when combined with character- and word-level n-grams,
it contributes to the best overall feature set. Finally, achieving good attribution results is still an open problem when training

data is very scarce (small sample size problem)

by other authors [116], [166]. While we cannot release the
actual messages, we will release all of the features derived
from them after this paper is published in an effort to provide
the community with a standardized resource for evaluation.

Pre-processing of each tweet includes removing all non-
English tweets, tweets with less than four words, and tweets
marked as retweets or any tweet containing the meta tag RT.
As we discussed previously, for most of the methods we
replace numbers, URLs, dates and timestamps by the meta
tags NUM, URL, DAT, and TIM, respectively. Moreover, the
hashtags and user references were replaced, since they enrich
the feature set for authorship attribution in such a way that
makes the task artificially easier yet ultimately unreliable [116]
For PPM-5 and SCAP, each digit of a token that does not
include letters is instead replaced by the same symbol.

The data set was partitioned into training and test sets via
k-fold cross validation. For Secs. IV-B-IV-E, each experiment
was repeated 10 times and the authors considered in each
fold are chosen at random. Average classification accuracy is
reported as a summary statistic over the 100 (10 x 10) different
results. Similarly, the open set experiments in Sec. IV-F make
use cross-validation, but with five folds.

B. Comparison of Different Feature Types

In order to assess the usefulness of feature types, we
first performed independent tests with two classifiers and
different sets of features: word-level n-grams (for n €
{1,...,5}), character-level 4-grams, and POS n-grams (for
n € {1,...,5}). Figs. 2(a:b) show results for different
methods when considering 50 authors and a varied number
of training messages per author.

The classification using only a few micro messages is still
an open problem with the performance steadily improving

. —
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<<RF — Char 4-grams
RF —Word 2:gram
RF —Word 4:gram
RF — Word {1:5}-grams
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RF — POS {1:5}-grams
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RF —Word 3:gram
RF —Word 5:gram

Fig. 3: Relevance of each feature used by itself, or combined
with other features for tests including 50 different Twitter
users and varying number of tweets per user. Here we used
the Random Forest classifier (Sec. III-D3) in all cases. The
obtained results, in general, are below the ones obtained with
PMSVM (see Fig. 2).

as more messages are present in the training pool. This is
an excellent research opportunity for the community: how to
deal with the small sample size problem in micro-message
authorship attribution.

The attribution performance is improved as more than 50
messages are available for training. In this case, the PMSVM,
even using the sparsest feature set — which, for this experi-
ment, is word 5-grams — is still better than random chance
for 50 users (2% accuracy). In addition, the most relevant
independent feature set is the character-level 4-grams. This
is expected, because that feature set captures relevant style
markers like repetitions in punctuation and emoticons.

The figure also shows that the unigrams are relevant fea-
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tures. When combined with other word-level n-grams (see
Word {1:5}-grams), they help produce an accuracy that
comes close to matching character-level 4-grams. This reflects
user preferences for some words that they are more comfort-
able with, which are not captured by character-level n-grams
due to their size or likelihood of appearance with other word
prefixes and suffixes.

Another interesting result is the effect of using POS n-
grams. While this feature by itself (see POS {1:5}-grams)
is not as strong as unigrams or character-level 4-grams, it
complements the other features when used in combinations
(see A1l Features). This combined representation reflects
many author preferences, from words to small characteristic
sentences and expressions to patterns of change in parts of
speech. Fig. 3 shows similar trends for the Random Forest
classifier, although with relatively lower accuracy for all
features. Note that RFs are normally more expensive than the
linear PMSVM learning model. Error bars were calculated for
both plots, but were too small to visualize.

At this point, one could wonder what would be the impact
of using other character n-grams instead of only character 4-
grams in the attribution task. Our choice for the character 4-
grams was motivated by previous work in the area [116], [158],
[166]. In addition, previous experiments have shown that these
features reasonably capture the idiosyncrasies commonly used
in Internet parlance albeit leading to a higher processing and
memory footprint, which may prevent their deployment when
considering large pools of messages and authors. Therefore
we now turn our attention to comparing different character
n-grams feature sets.

In all the experiments, we consider PMSVM as the base
classifier over different character n-grams feature sets, with
n € 1...5. The test setup comprises 50 users and 500 tweets
per user, all of them randomly sampled. This process was
repeated 10 times in order to have 10 different runs for each
set of users/messages. The reported results are the average
classification accuracies, and computational time and average
feature vector length required to analyze each pool of authors.

Fig. 4 depicts the classification results for different char n-
grams, while Fig. 5 shows the results for the training time
spent by the different methods and the length of the final
generated feature vector. These experiments were performed
on a 12-core i7-5820K CPU with 3.30GHz, and 96GB of
RAM memory. The reported computational times are related
to training an attribution model for 50 authors with 500
messages per author. This means the reported times refer to
the total processing time for approximately 50 x 500 = 25,000
messages.

First of all, aligned with previous studies in the literature,
Char 4-grams shows the best individual performance in
terms of accuracy, followed closely by the Char 3-grams
features. However, Char 3-grams offers a competitive
accuracy with less than half of the number of features
(c.f. Fig. 5). In turn, Char 5-grams, although encompassing
much more features, is outweighed by Char 3-grams and
Char 4-grams.

Combining some of the char n-grams into a more complex
model also shows potential for future investigations with A11
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of each stacked bar, we show the final average feature vector
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Char—-grams outperforming all individual char-gram meth-
ods and also improving the best result obtained in Fig. 2 when
incorporating additional char n-grams (All Features +
All Char-grams) although at the cost of almost doubling
the size of the feature set representation. In this case, the A11
Features technique reported in Fig. 2 has approximately
100,000 features while its augmented version with all char n-
grams variations accounts for almost 180,000 features. This
doubling effect might be even worse when dealing with more
authors and messages in the training stage, as more charac-
ters and words combinations would be present, potentially
exploding the number of features and rendering the analysis
intractable.

We close this section concluding that the strategy of using
all word/POS-tags n-grams and only the character 4-grams
offers a competitive performance with significant less cost
in terms of space and processing time. Regardless of these
requirements, when dealing with Internet parlance in social
media like Twitter (full of emoticons, emojis, slangs and
exaggerated punctuation), character n-grams play a crucial role
in the author discrimination and should be more studied.

C. Comparison of Different Classifiers

While Char 4-grams can help improve classification
accuracy, their use generates a greater number of features to
process. This, coupled with the need for large amounts of
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Fig. 6: Classification accuracy comparison between
PMSVM trained with all of the features from Fig. 2,
SCAP (Sec. III-D4), PPM-5 (Sec. III-D5) and the method of
Schwartz et al. [166]. All experiments consider 50 users and
a variable number of tweets per user. Some methods trade off
in performance with increasing numbers of tweets per user.

training data due to the small size of each sample, means that
we expect any approach making use of a common classifier
like linear SVM to be slow in the best case, and not converge
in a reasonable amount of time in the worst case. This is where
the PMSVM, SCAP, and PPM-5 methods show an advantage.
For instance, relying on PMSVM, a larger number of features
has demonstrably less impact on the classification time, and
significantly improves accuracy.

When considering all character- and word-level n-grams,
as well as POS n-grams (see PMSVM - All Features in
Fig. 6) as part of the feature representation, PMSVM out-
performs the method proposed by Schwartz et al. [166] by an
average margin of 10 percentage points for 50 users regardless
of the number of training tweets per user. Moreover, the linear
SVM classifier used in the method of Schwartz et al. is not as
efficient as PMSVM. Therefore, for all additional experiments
with the feature sets proposed by Schwartz et al. (Char
4-grams and Word {1:5}-grams), we opted to replace
the linear SVM classifier with PMSVM.

Fig. 6 also depicts the performance of the SCAP and PPM-5
methods. The first thing to notice is that PPM-5 outperforms
the other methods when 500 or fewer training tweets per user
are present. However, as more messages per user are added to
the training set, the representation incorporating character- and
word-level n-grams, as well as POS n-grams presents better
results (see PMSVM - All Features). This is expected,
as more data is available to capture the author’s style. In
addition, the PPM-5 and SCAP methods perform better than
the method of Schwartz et al., especially for small numbers
of tweets per user.

Another interesting trend present in the results is the
steep slope in the classification curve for PMSVM - All
Features. This suggests that the more tweets we can gather
for training, the better for this configuration. In a way, this is
aligned with the classical literature on authorship attribution,
which has already shown that long-form writing is easier to

assess than short-form writing. If a very large set of small
samples is collected for a specific author, it functions similarly
to a long-form text, from which many samples can be produced
for more traditional authorship attribution tasks. However, for
attribution tasks involving social media, we cannot set any
expectations beyond the size of the samples from the medium
itself (e.g., 140 characters for Twitter).
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Fig. 7: Classification accuracy comparison between PMSVM
trained with all of the features from Fig. 2, the method of
Schwartz et al. [166], PPM-5 and SCAP for 50, 500, and
1,000 test authors. Note that it was not possible to run some
of the methods for 500+ users on a standalone Intel i7 5820k
machine with 96GB of memory. Cloud-based infrastructure is
a possible workaround for this.
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D. Efficiency and Search-space Reduction

We now turn our attention to the effect of adding more
authors (or classes) of interest and evaluate how the methods
handle an increasing number — up to 1,000 authors per test.
Fig. 7(a:c) shows the results for these experiments. Error
bars were calculated for both plots, but were too small to
visualize. PMSVM handles hundreds of users while continuing
to increase in accuracy as more training messages are used per
user. This shows that investigators could keep adding training
examples if they exist in an attempt to improve accuracy —
something that is not possible with all classifiers. With small
numbers of tweets per user, and many users, the classification
accuracy for all methods is significantly lower compared to
more favorable settings using fewer users.

When considering the SCAP and PPM-5 methods, SCAP is
competitive with PMSVM only when very few tweets per user
are available for training. On the other hand, PPM-5 appears to
be more capable than PMSVM in that same scenario. However,
as already observed in the case of 50 authors, when a large
number of tweets per author is available, the PMSVM method
using character- and word-level n-grams fused with POS-tag
n-grams is typically more effective. In all scenarios, however,
it is clear that there is plenty of room for improvement as
the best attribution results are still below 40 percentage points
for our experiments with 500 or more authors. Although these
results are much better than chance they are far from useful
as courtroom evidence, especially when considering the most
difficult scenario in Fig. 7(c).

Although traditional authorship attribution intends to find
the exact author of a given text, achieving that goal may not
always be possible when considering social media. By their
very nature, short messages are very difficult to attribute to
a single author. Instead of searching for the most probable
author, we can rank all of the known authors according to
the output function, and then show how well we can reduce
the search space of the problem. We tested this method for
the PMSVM with 500 Twitter users and a varying number
of tweets per user. The Cumulative Match Curve (CMC) in
Fig. 8 shows the accuracy of finding the author of a tweet
considering the top IV users.

The classifier starts with a classification accuracy below
25% when using 50 tweets per user (the purple curve in
Fig. 8). Considering the random baseline of 0.2% (randomly
guessing the author of a Tweet in a universe with 500 users),
this result directly conveys to the research community how
difficult the problem is. In more than 65% of the cases, the
correct user will be among the top 50 users (out of 500) when
we use 200 tweets per user (the red curve in Fig. 8). Assuming
generalization, this would reduce the number of suspects to
10% of the original size in more than half of the scenarios.
500 messages per user (blue curve) brings a further reduction.

E. Feature Importance

When combining different features to solve a problem it is
natural to ask which ones are effectively contributing to the
solution. As we discussed earlier, there are different ways of
assessing feature importance in a classification scenario. Here

Classification Accuracy (%)

1 51 101 151 201 251 301 351 401 451 500
Rank

1500 messages / user 1200 messages / user

100 messages / user 1 50 messages / user

Fig. 8: Cumulative Match Curves for PMSVM for 500 Twitter
users with a varying number of tweets per user.

Feature importance for 50 authors and 200 tweets per author
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3% 0% °
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Word 2-gram
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Word 3-gram
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Fig. 9: Feature importance determined by a Random Forest
classifier for a fused vector consisting of different word-level
n-grams, character-level 4-grams, and different POS n-grams
for 50 authors and 200 training tweets per author. Note that
the entries marked as 0% are actually very close to zero and
not literally zero.

we chose the random forests classifier to perform this task
according to the procedure described in Sec. III-D3.

Fig. 9 shows the result of analyzing 50 authors and 200
tweets per author in the training set. We consider the best
attribution setup, which takes in features from word-level n-
grams (for n € {1,...,5}), character-level 4-grams, and POS
n-grams (for n € {1,...,5}). The random forest’s inherent
ability to assign feature importance gives us a direct indication
of the weights for each feature type. The main conclusion
from the results discussed in Sec. IV-B was that combining
different feature groups leads to a better attribution accuracy
even though the individual performance of some of them was
poor (e.g., Word 5-grams in Fig. 2). The feature importance
values help us analyze this conclusion in more detail.

The results in Fig. 9 are in line with those in Sec. IV-B. An
interesting observation, however, is that although POS n-grams
are not very effective by themselves (see POS {1:5}-grams
in Fig. 2), when combined with other feature types they
are weighted more heavily in importance. Together, POS 1-
and 2-grams represent over 50% of the feature importance.
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Fig. 10: An overview of open set authorship verification
experiment. Pairs of tweets are sampled from sets where the
authors are either known (training and testing) or unknown
(just testing). A matching tweet pair consists of two tweets
by the same author; a non-matching tweet pair consists of
two tweets by different authors. Features from Table III are
extracted with respect to the information contained in both
tweets from the pair. In the training phase, a verification
model is learned from matching and non-matching tweet pairs
from the known authors. The testing phase evaluates matching
and non-matching tweet pairs from both known and unknown
authors. In a real forensic scenario, one of the two tweets in
the pair during testing could be from a known author in order
to make an attribution determination, or the models could be
used to simply identify common authorship.

Character-level 4-grams, by themselves, led to good classi-
fication results in one of our earlier experiments (see Char
4-gram in Fig. 2) and this is reflected in the feature set’s
relatively high importance of 26% in this experiment. Un-
igrams (Word l-gram and POS 1l-gram) represent 43%
of the feature importance. Although somewhat neglected in
the literature, unigrams can have merit in some cases. Finally,
some feature groups were not judged to be important (word-
level 3-, 4-, and 5-grams along with POS 4- and 5-grams). This
type of anlaysis could help in a posterior analysis of feature
complementarity and subsequent reduction. In this case, POS
1- and 2-grams along with character-level 4-grams and word-
level 1-grams account for 93% of the feature importance.

E. Open Set Attribution

Thus far, we have only evaluated feature and classifier
approaches in a closed set context, where all authors seen
at testing time were known at training time. What kind of
behavior can be expected from classifiers operating in an open
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Fig. 11: Open set classification accuracy for the W-SVM [163],
RBF SVM [38], and Logistic Regression [54] algorithms.
In all cases, samples from 50 known authors are present.
Each point on a curve reflects average classification accuracy
over five-testing folds. As the number of unknown authors
generating samples is increased during testing from 0 to 150,
a decrease in accuracy can be seen right away (i.e., the drop
in accuracy between a closed set and 50 unknown authors).

set context, where large numbers of unknown authors posting
to social media will appear as inputs? For this experiment,
we follow the feature extraction and open set authorship
verification methodology of Sec. III-D2, computing results
over five randomly sampled folds at each evaluation point.

50 known authors were randomly chosen from the corpus
and fixed across folds for this experiment. For each fold,
positive training samples for these authors were generated
by randomly sampling 600 matching tweet pairs (i.e., two
different tweets from the same author), and negative samples
generated by sampling 600 non-matching tweet pairs (i.e.,
two different tweets from two different authors). This training
data was used to create three separate verification models that
can tell if any two tweets came from the same author. For
the models, the open set-specific W-SVM [163] classifier was
considered, along with RBF SVM [38] and Logistic Regres-
sion [54] for comparison. Parameters for each classifier were
tuned via cross-validation during training. A visual overview
of the training process is shown at the top of Fig. 10.

The first test set establishes a closed set baseline. It contains
200 positive and 200 negative tweet pairs for each fold, all
coming from the 50 authors known at training time, with no
samples overlapping with the training set. It is marked “0”
on the x-axis of Fig. 11. The subsequent tests start with 100
positive and 100 negative tweet pairs from a new sampling of
tweet pairs from the 50 known authors, and add, in increments,
100 positive and 100 negative tweet pairs from an additional
50 unknown authors. Three of these open set increments are
generated, from 50 to 150 unknown authors. Thus the test sets
grow in both size and number of unknown authors considered.
A visual overview of the testing process is shown in the bottom
of Fig. 10. The results for each classifier are shown in Fig. 11.

As the problem grows to become more open by adding
additional authors, accuracy for the W-SVM and RBF SVM
classifiers drops accordingly until performance begins to
plateau around 100 unknown authors. A slight advantage is
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demonstrated for the W-SVM, which is expected, given its
inherent ability to minimize the risk of the unknown. Logistic
regression, which does not benefit from the maximum margin
principle, is significantly worse than the other two classifiers
in all cases. While these results show some feasibility for
classifiers that have been applied to open set problems in other
domains [163], note that pair matching for verification is the
most basic scenario for authorship attribution. These results
make it clear that much more work must be done before
full multi-class open set attribution incorporating hundreds of
known authors can be achieved.

V. CONCLUSION AND FUTURE DIRECTIONS

The enormous popularity of social media means that it is
now a conduit for both legitimate and illegitimate messages
targeted at the broadest possible audience. Correspondingly,
new forensic challenges have appeared related to this form
of new media, triggering the need for effective solutions and
requiring the attention of the information forensics community.
A primary problem in this area has been authorship attribution
for short messages.

In this vein, this study showed that for popular services
like Twitter, we face the dilemma of simultaneously having an
enormous overall corpus, yet scarcity of information for indi-
vidual users. This suggests that we should consider strategies
that are a bit different than traditional authorship attribution
algorithms for long form writing. When working with highly
constrained forms of writing like tweets, the problem size
grows rapidly due to the large number of users and messages
involved. One way to address this problem is to compute
very low-level lexical statistics, which easily leads to high-
dimensional spaces. Moreover, the problem is exacerbated by
the unconventional punctuation, abbreviations, and character-
based signifiers common in Internet culture. There is a need
for better learning tools that will help us avoid the so-called
curse of dimensionality [21].

As discussed throughout this article, there are several com-
plementary paths one can follow when solving the authorship
attribution problem for social media forensics. The methods
we introduced are just the beginning, as this problem is far
from being solved. This point is reinforced by the classification
results we observed in Sec. IV: they are far from perfection.
The PMSVM algorithm used in conjunction with diverse and
complementary features is a good advance over the state-of-
the-art methods, and opens the door for other researchers to
explore feature sets that have been avoided out of computa-
tional concerns. In addition, the cumulative matching analysis
showed that current attribution methods can greatly reduce the
number of users to be analyzed in a real situation. In the rest of
this section, we provide a brief rundown of some of the more
difficult aspects of this problem that the community should
turn its attention to.

A. Real-World Use

While expert witnesses well versed in forensic authorship
attribution are being used in court [10], the results from au-
tomated authorship attribution methods are not commonplace.

However, this will likely change in the next several years as the
relevant technologies become more accessible. The methods
we have discussed can be used directly by investigators,
especially for suspect search-space reduction or helping to
assemble more conventional evidence that is admissible in
court.

The results presented in this article (e.g., 70% accuracy for
50 authors) are just a beginning, but they do show that the tech-
niques we introduced may be feasible to deploy when looking
for clues in a real investigation. For further clues, researchers
should also look closely at the graphical structure of a social
network. Such an analysis might surface additional suspects
that are implicated via their association to an identified author.
Researchers interested in continuing or building upon our
work herein can obtain the source-code from our GitHub
repository: http://tinyurl.com/zvxsavl. Although
the Twitter raw data cannot be freely shared (Twitter data
extraction policy), its processed versions might be obtained
under request.

B. Social Network-scale Data

The amount of data present on social media services is
growing larger each day. As a consequence, scalable classifiers
are as important as discriminative features. The experiments
in this article indicate that by using more training data, better
results can be achieved. Methods like PMSVM, which are
custom-tailored to high-dimensional spaces, represent a large
improvement over prior methods using traditional learning
methods.

Social network-scale data can be characterized by the three
Vs of big data: volume, velocity and variety. The volume
of data found on social media sites is clearly large, and the
velocity at which it is delivered is remarkably fast. In this
work, we only dealt with textual features, but the variety of
data found on social media is much richer than just this. Future
work should also look at meta-data, images, and videos posted
online to further hone the accuracy of attribution by pursuing
a hybrid approach that extends beyond just stylometry.

At this point, one would wonder why not just focusing
on features that are related to social media messages rather
than building a larger feature set as we exploited in this work.
We believe that an active adversary would more easily attack
a solution if it were only based on explicit features related
to social media. In the past, we have seen this enough with
specific features for detecting e-mail SPAMS. Some specific
features might be attacked and mimicked thus preventing
proper identification of an author. The features we studied
in this work take into account some elements that are native
to social media, outside the realm of proper writing, such
as hashtags, web links and user directed messages. However,
there are still many other native features to be explored in
social media, including the actual social graph of a suspect.
Other meta-data such as timestamps, device records, and
browser records could also be exploited, though they are
often unreliable and, in some cases, easily forged. Therefore,
a more generalized solution that incorporates knowledge of
the problem, general and data-driven features and, possibly,
network connectivity and the social network of suspects would
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be, certainly, more difficult to tamper with. We leave this as
another opportunity for the research community to delve into.

Regardless, the need for algorithms that can exploit context
is paramount. Today’s machine learning algorithms are not
able to identify salient pieces of information related in time
and space to a tweet with any meaningful degree of accu-
racy. Bayesian reasoning is a good start, but more efficient
probabilistic models taking into account entire social networks
will be necessary in difficult attribution cases. For example,
when a message appears to be unique, but is actually a newly
propagating meme.

C. Dense Features

The methodology we introduced consisted of dynamic fea-
tures extracted from raw text, and messages like tweets contain
few words, thus the resulting feature vectors are always sparse.
In the course of this work, we experimented with standard
techniques such as PCA and random selection of features
to reduce the dimensionality of the feature vectors. Random
selection always performed worse, no matter the size of the
extracted features, and PCA failed to converge in some cases
due to the overwhelming number of examples and dimensions
and the limits of the available hardware.

Just to put things into perspective, PCA might lead to worse
performance both in terms of accuracy and speed. The reason
for the drop in accuracy is that useful information may be
discarded when reducing dimensionality, while the reason for
the reduction in speed is likely due to the interplay of the
resulting dense representation and the classification algorithm
processing it. In this article, we looked at optimal algorithms
for sparse representations, which speed up the processing
given the appropriate input.

As an example, the classification accuracy for 50 authors,
50 tweets per author in the training set, with A11 Features
is 34% (see Fig. 2). The PCA-reduced version keeping 90% of
the variance (from 14,500 to about 700 features) is 27.5% — a
difference of nearly seven percentage points. This gap becomes
smaller as more tweets are present in the training set at the
cost of more computational time for PCA. For 200 tweets
per author during training, PCA reduces the 50,000-d feature
vector of A11 Features in Fig. 2 to 2,000 (keeping 90%
variance) and the performance difference is 2.5 percentage
points. Although the number of features considered is much
smaller, the time to compute such a reduction needs to be
considered along with the possible drop in performance.

Future work could explore other feature selection and
dimensionality reduction techniques such as random projec-
tion when computational power is a bottleneck, which might
improve the classification task to avoid computationally ex-
pensive sparse feature representations. When using Random
Forests, which creates different sets of trees with each one
using just a sub-set of features (usually /n, with n being
the original number of features), the performance in terms
of classification accuracy is similar but an implementation
optimized for sparse vectors and additive kernels still runs
faster (e.g., PMSVM). For efficiency, better multi-class from
binary techniques [156] could also be used instead of the
expensive one-vs-all techniques.

D. Representativeness

Unlike other text classification tasks, in authorship attri-
bution it is not always possible to assume that training and
evaluation texts will share the same properties. For instance,
in a forensic examination of suspicious tweets, for some
of the suspects we may not find authentic tweets by them.
However, we might be able to find other types of text like
email messages, blog posts, etc. Certainly, the available texts
by each suspect may be on a completely different topic in
comparison to the texts under investigation. In all these cases,
the training dataset is not representative enough with respect
to the documents under investigation. Thus, unlike other text
classification tasks, we need authorship attribution models that
remain useful in cross-genre and cross-topic conditions. Re-
cently, attempts have been made to estimate the effectiveness
of attribution models in such challenging conditions. But the
lack of large-scale data covering multiple and heterogeneous
genres and topics by the same authors limits the generality of
the conclusions [160], [176], [177].

Another problem that affects the representativeness of the
training data is the distribution of that data over the candidate
authors. In a forensic examination, when class imbalance exists
(the training texts are unequally distributed over candidate
authors), the suspect for whom we have plenty of training
samples should not be considered more likely than the suspect
for whom only a few training documents are available. The
attribution models should make efforts not to favor the major-
ity authors even when the imbalance ratio is extremely high.
Certain machine learning methods dealing with the class im-
balance problem can be adopted for authorship attribution [53],
[174] and this problem needs to be studied more thoroughly.

E. Open Set Recognition

The confounding problems related to the authorship attribu-
tion task such as hoaxes, impersonations and identity theft lead
to an open set scenario, whereby a candidate author may not
be among the known suspects [181]. As we learned in this
article, a traditional multi-class classifier will always return
an answer pointing to a known suspect, which will not be
correct in many instances. This suggests that the effort should
be placed on reducing and prioritizing the known suspects
rather than always pointing to a single culprit.

In open set recognition problems, we face the dilemma of
not having information about all of the existing authors on
social media. We must always learn from an incomplete set
of authors when training a classifier. However, in the testing
phase, many different authors might appear, even authors that
were not present in the training set. Traditional classifiers
are not designed for this scenario, but a new class of open
set classifiers is able to produce results that indicate positive
classification or rejection in the case of an unknown author.

In this review, we introduced a basic methodology for open
set attribution incorporating an algorithm that is known to
minimize the risk of the unknown [163], and presented an
experiment that highlighted the difficulty of the problem. It
is worth mentioning that a number of other existing open set
machine learning algorithms could be considered [44], [86],



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2016 23

[164]. Certainly this is another avenue of possible theoretical
and practical work.

F. Decision-level Fusion

Finally, due to the complexity of the problem, combining
different models is a promising path. Here we investigated
combining different character- and word-level n-gram feature
sets along with POS-tag n-grams, which turned out to be
effective. However, according to our analysis, not all features
are equally important, which shows that investigating how
each group of features affects the performance is an impor-
tant research direction. Future work could explore combining
different problem-solving paradigms at the decision-level. For
instance, combining the output of the PMSVM, Random For-
est, SCAP and PPM models to ideally arrive at a more accurate
result, compared to examining each model in isolation.
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APPENDIX A
FUNCTION WORDS USED FOR CREATING THE DATASET

TABLE IV: Function words used for creating the authorship
data set.

a about above after all although
am among an and another  any
anybody  anyone anything  are around as

at be because before behind below
beside between both but by can

cos do down each either enough
every everybody  everyone everything few following
for from have he her him

i if in including inside into

is it its latter less like

little lots many me more most
much must my near need neither
no nobody none nor nothing  of

off on once one onto opposite
or our outside over own past

per plenty plus regarding same several
she should since SO some somebody
someone  something  such than that the

their them these they this those
though through till to toward towards
under unless unlike until up upon

us used via we what whatever
when where whether which while who
whoever ~ whom whose will with within
without worth would yes you

B PART-OF-SPEECH TAGS

Tag

SF X o QmMmoaw

NKXE<CHNRETOZE DR

(1]

(2]

(3]

[4

—_

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

TABLE V: Part-of-speech tags considered in this work
(adapted from [65]).

Meaning

adjective (J*)

proper noun (NNP, NNPS)
interjection (UH)

determiner (WDT, DT, WP$, PRP$)
emoticon

coordinating conjunction (CC)

other abbreviations, foreign words, possessive endings, symbols,
garbage (FW, POS, SYM, LS)

hashtag (indicates topic/category for tweet)

at-mention (indicates another user as a recipient of a tweet)
discourse marker, indications of continuation of a message across
multiple tweets

numeral

nominal + verbal

proper noun + verbal

common noun (NN, NNS)

pronoun (personal/WH; not possessive; PRP, WP)

pre- or postposition, or subordinating conjunction (IN, TO)
adverb (R*, WRB)

nominal + possessive

verb particle (RP)

URL or email address

verb incl. copula, auxiliaries (V*,MD)

punctuation

existential there, predeterminers (EX, PDT)

X + verbal

proper noun + possessive
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Source

Features Used

Classifier

Corpus

Burrows 1987 [28], 1989 [29], 1992 [30], [31]

Ledger and Merriam 1994 [117]
Mealand 1995 [132]

Holmes and Forsyth 1995 [75]
Baayen et al. 1996 [13]
Merriam 1996 [137]

Tweedie and Baayen 1998 [186]
Binongo and Smith 1999 [20]
Holmes et al. 2001 [76]

Baayen et al. 2002 [12]

Hoover 2003 [80]

Binongo 2003 [19]

Kestemont et al. 2015 [99]

Small set of function words
Character-level n-grams
Function words

Words

Syntax

Function words
Function words
Function words
Function words
Function words
Word-level n-grams
Function words
Function words

Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis
Multivariate analysis

English prose
English drama
Greek prose
English prose
English prose
English drama
Latin prose
English drama
Journalism
Dutch prose
English prose
English prose
Latin prose

TABLE VII: Distance-based and Simple Model-based Classification for Authorship Attribution (Sorted by Classification Type)

Bissel 1995 [22]
Somers 1998 [170]

Chaski 2001 [39]
Somers and Tweedie 2003 [171]

Merriam 1979 [134], 1980 [135], 1982 [136]

Grieve 2007 [68]

Weighted cum. sum of lexical
statistics

Weighted cum. sum of lexical
statistics

Syntax and punctuation
Weighted cum. sum of lexical
statistics

Word positions

Words, syntactic structures, and
character-level n-grams

Statistical hypothesis test
Statistical hypothesis test

Statistical hypothesis test
Statistical hypothesis test

Statistical hypothesis test
Statistical hypothesis test

English prose
English prose

English prose
English prose

English drama
English prose

Kjell 1994 [104]

Character-level n-grams

Cosine Similarity

English prose

Hoover 2004 [82]
Kestemont et al. 2015 [99]

Function words
Function words

Delta
Delta

English prose and poetry
Latin prose

Kukushkina et al. 2001 [114]

Khmelev and Tweedie 2002 [101]
Khmelev and Teahan 2003 [100]

Character-level ~ n-grams  and
grammatical word classes
Character-level n-grams
Character-level n-grams

Markov models

Markov models
Markov models

Russian prose

English prose
English journalism

Zhao et al. 2006 [197]
Zhao and Zobel 2007 [196]

Parts of speech
Function words and part-of-
speech tags

Kullback-Leibler Divergence
Kullback-Leibler Divergence

English novels and journalism
English prose and drama

Teahan and Harper 2003 [183]
Juola and Baayen 2005 [90]

Character streams
Character streams and function
words

Cross-entropy
Cross-entropy

English journalism
Dutch prose

Kjell et al. 1995 [105]
Hoorn et al. 1999 [78]
Keselj et al. 2003 [97]

Zhao and Zobel 2005 [195]

Character-level n-grams
Character-level n-grams
Character-level n-grams

Function words

K-NN
K-NN and Naive-Bayes
K-NN

K-NN and Naive-Bayes

English journalism

Dutch poetry

English prose and Greek jour-
nalism

English journalism

Mosteller and Wallace 1964 [141]
Clement and Sharp 2003 [42]
Peng et al. 2004 [150]

Savoy 2013 [161]

Small set of function words
Character-level n-grams
Character- and word-level n-
grams

Function words

Naive-Bayes
Naive-Bayes
Naive-Bayes

Naive-Bayes

English prose
English prose
Greek journalism

English prose

Stamatatos et al. 2000 [179], 2001 [180]
Chaski 2005 [40]

Jockers and Witten 2010 [87]

Syntactic chunks

Character- and word-level n-
grams

Words and word-level bigrams

Linear Discrim. Analysis
Linear Discrim. Analysis

Regularized Discrim. Analysis,
Delta, and K-NN

Greek journalism
English prose

English prose




Tearle et al. 2008 [184]

Lexical, syntactic, structural, and
content-specific features

Neural Networks
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TABLE VIII: Model-based Classification for Authorship Attribution (Sorted by Classification Type)

Matthews and Merriam 1994 [129] Small set of function words Neural Networks English drama

Merriam and Matthews 1994 [138] Function words Neural Networks English drama

Kjell 1994 [102], [103] Character-level n-grams Neural Networks English prose

Lowe and Matthews 1995 [120] Function words Neural Networks English drama

Martindale and McKenzie 1995 [127] Words Neural Networks English prose

Kjell et al. 1995 [105] Character-level n-grams Neural Networks English journalism

Tweedie et al. 1996 [187] Function words Neural Networks English prose

Hoorn et al. 1999 [78] Character-level n-grams Neural Networks Dutch poetry

Waugh et al. 2000 [190] Function words Neural Networks English prose

Zheng et al. 2006 [198] Characters, function words and  Decision Trees, Neural  English and Chinese
syntax Networks, and SVM newsgroups

Li et al. 2006 [118] Lexical, syntactic, structural, and  Neural Networks and SVM English and Chinese
content-specific features newsgroups

English prose and English drama

Jockers et al. 2008 [88]
Jockers and Witten 2010 [87]

Words
Words and word-level bigrams

Nearest Shrunken Centroid
Nearest Shrunken Centroid and

English prose
English prose

SVM
Schaalje and Fields 2011 [162] Word-level statistics Nearest Shrunken Centroid English prose
Fung 2003 [63] Function words SVM English prose
Diederich et al. 2003 [47] Function words SVM German journalism
Gamon [64] Function words, syntactic and se- SVM English prose
mantic features
Koppel et al. 2005 [112] Function words and part-of- SVM English prose
speech tags
Koppel et al. 2006 [110] tf-idf over words and characters SVM English web posts
Argamon et al. 2007 [9] Functional lexical features SVM English prose
Pavelec et al. 2007 [148] Conjunction types SVM Portuguese journalism
Koppel et al. 2007 [111] Function words, syntactic struc- SVM English prose
tures, part-of-speech tags, com-
plexity and richness measures,
and syntactic and idiosyncratic
usage
Stamatatos 2008 [174] Character-level n-grams SVM English and Arabic journalism
Forstall and Scheirer 2009 [57] Character-level n-grams SVM English prose, and English and
Latin poetry
Escalante et al. 2011 [53] Character-level n-grams SVM English journalism
de Vel et al. 2001 [46] Capitalization, white space, and SVM English e-mail
punctuation
Hedegaard et al. 2011 [73] Word- and character-level n- SVM English and (translated) Russian
grams and semantic features prose
Savoy 2013 [161] Function words SVM English prose
Sidorov et al. 2014 [168] Syntactic n-grams SVM English prose
Sapkota et al. 2015 [159] Character-level n-grams SVM English electronic communica-

tion and journalism

Abbasi and Chen 2005 [1]
Argamon et al. [8]

Koppel and Schler 2003 [106]

Lexical, syntactic, and structural
features

Function words and part-of-
speech tags

Function words, part-of-speech
tags, idiosyncratic usage

Decision Trees and SVM

Decision Trees

Decision Trees and SVM

Arabic and English web posts
English journalism

English e-mail

Popescu and Grozea 2012 [151]
Bartoli et al. 2015 [15]

Maitra et al. 2015 [123]

Pacheco et al. 2015 [147]

Caliskan-Islam 2015 [33]

Character-level n-grams

Lexical, syntactic, structural, and
content-specific features

Lexical, syntactic, structural, and
content-specific features

Lexical, semantic, syntactic,
structural, and content-specific
features

Lexical and syntactic features

Random Forest
Random Forest

Random Forest

Random Forest

Random Forest

AAAC data set [89]

English, Dutch, Greek and Span-
ish prose

English, Dutch, Greek and Span-
ish prose

English, Dutch, Greek and Span-
ish prose

Source code
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TABLE IX: Works in Short Text Authorship Attribution (Sorted by Type of Corpus)

Source

Features Used

Classifier

Corpus

Sanderson and Guenter 2006 [158]

Hirst and Feiguina 2007 [74]

Character and word sequences

Syntactic labels

Character-level Sequence Kernel,
Markov chains and SVM
SVM

English short text samples

English short text samples

Koppel et al. 2007 [111] Function words SVM English essays

Forstall et al. 2011 [56] Character-level n-grams SVM Latin poetry

Anderson 2001 [6] Capitalization, white space, and SVM English e-mail
punctuation

de Vel et al. 2001 [46] Capitalization, white space, and SVM English e-mail
punctuation

Koppel and Schler 2003 [106]
Layton et al. 2012 [115]

Brocardo et al. 2013 [27]

Function words, part-of-speech
tags, idiosyncratic usage
Character-level n-grams

Character-level n-grams

Decision Trees and SVM
SCAP

Ad hoc similarity measure

English e-mail

English electronic communica-
tion
English e-mail

Koppel et al. 2011 [109]

Character-level n-grams

Cosine similarity

English web posts

Koppel and Winter 2014 [113] Character- and word-level n- SVM English web posts
grams

Qian et al. 2014 [152] Word and character-level n-grams ~ SVM English web posts
and syntactic features

Afroz et al. 2015 [3] Lexical, syntactic and domain- SVM Russian, English and German
specific features web posts

Frantzeskou et al. 2006 [60] Byte-level n-grams SCAP Source code

Frantzeskou et al. 2007 [59] Byte-level n-grams SCAP Source code

Hayes 2008 [72]

Burrows and Tahaghoghi 2007 [32]
Caliskan-Islam et al. 2015 [34], [35]

Lexical features

Token-level n-grams
Lexical and syntactic features

Multivariate analysis and Linear
Discrim. Analysis

Statistical hypothesis test
Random Forest

Source code

Source code
Source and compiled code

TABLE X: Models for Eastern and Near Eastern Languages, Works in Authorship Attribution for Social Media, and Semantic

Analysis for Short Texts

Source

Features Used

Classifier

Corpus

Peng et al. 2003 [149]
Keselj et al. 2003 [97]
Abbasi and Chen 2005 [1]

Character-level n-grams
Byte-level n-grams

Lexical, syntactic, and structural
features

Naive-Bayes
Dissimilarity measure
Decision Trees and SVM

Chinese prose
Chinese prose
Arabic and English web posts

Abbasi and Chen 2008 [2]

Layton et al. 2010 [116]
Boutwell 2011 [23]

Silva et al. 2011 [169]

Green and Sheppard 2013 [67]
Keretna et al. 2013 [96]
Mikros et al. 2013 [139]

Schwartz et al. 2013 [166]

Bhargava et al. 2013 [18]
Almishari et al. 2014 [5]
Okuno et al. 2014 [144]
Arakawa et al. 2014 [7]
Igawa et al. 2015 [85]
Albadarneh et al. 2015 [4]
Azarbonyad et al. 2015 [11]

Static and dynamic features

Character-level n-grams
Character-level n-grams
Idiosyncratic usage

Lexical and syntactic features
Part of Speech Features
Author’s multilevel n-gram pro-
file

Character- and word-level n-
grams

Lexical features

Character-level n-grams

Part of Speech n-grams

Retweet features

Word-level n-grams

TF-IDF fearures

Character-level n-grams

PCA and Karhunen-Loeve trans-
forms

SCAP

Naive-Bayes

SVM

SVM

Jacard’s coefficient index

SVM

SVM

SVM

Naive-Bayes

cosine similarity

Variable Importance

Ad hoc similarity measure
Naive-Bayes

SCAP

English email and web posts

English social media
English social media
Portuguese social media
English social media
English social media
Greek social media

English social media

English social media
English social media
English social media
Japanese social media
English social media
Arabic social media
English social media

Titov and McDonald 2008 [185]
Li et al. 2010 [119]
Hong and Davison 2010 [77]

Zhao et al. 2011 [194]
Seroussi et al. 2012 [167]

Owoputi et al. 2013 [146]

Latent Dirichlet Allocation and
Probabilistic Latent Semantic
Analysis

Latent Dirichlet Allocation
Latent Dirichlet Allocation and
Author-Topic Model

Latent Dirichlet Allocation
Words and Latent Dirichlet Allo-
cation

Words

Topic Assignment
Topic Assignment
Topic Assignment

Topic Assignment
Probabilistic Model

Brown Clustering

Web reviews
Web post summaries
English social media

English social media
English e-mail and web posts

English social media




