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Abstract—It is often desirable to be able to recognize when
inputs to a recognition function learned in a supervised man-
ner correspond to classes unseen at training time. With this
ability, new class labels could be assigned to these inputs by
a human operator, allowing them to be incorporated into the
recognition function — ideally under an efficient incremental
update mechanism. While good algorithms that assume inputs
from a fixed set of classes exist, e.g., artificial neural networks
and kernel machines, it is not immediately obvious how to
extend them to perform incremental learning in the presence
of unknown query classes. Existing algorithms take little to no
distributional information into account when learning recognition
functions and lack a strong theoretical foundation. We address
this gap by formulating a novel, theoretically sound classifier
— the Extreme Value Machine (EVM). The EVM has a well-
grounded interpretation derived from statistical Extreme Value
Theory (EVT), and is the first classifier to be able to perform
nonlinear kernel-free variable bandwidth incremental learning.
Compared to other classifiers in the same deep network derived
feature space, the EVM is accurate and efficient on an established
benchmark partition of the ImageNet dataset.

Index Terms—Machine Learning, Supervised Classification,
Open Set Recognition, Open World Recognition, Statistical Ex-
treme Value Theory

I. INTRODUCTION

Recognition problems which evolve over time require clas-
sifiers that can incorporate novel classes of data. What are
the ways to approach this problem? One is to periodically
retrain classifiers. However, in situations that are time or
resource constrained, periodic retraining is impractical. An-
other possibility is an online classifier that incorporates an
efficient incremental update mechanism. While methods have
been proposed to solve the incremental learning problem, they
are computationally expensive [1]–[4], or provide little to no
characterization of the statistical distribution of the data [5]–
[8]. The former trait is problematic because it is contrary to the
fundamental motivation for using incremental learning — that
of an efficient update system — while the latter trait places
limitations on the quality of inference.

There is also a more fundamental problem in current in-
cremental learning strategies. When the recognition system
encounters a novel class, that class should be incorporated
into the learning process at subsequent increments. But in
order to do so, the recognition system needs to identify novel
classes in the first place. For this type of open set problem
in which unknown classes appear at query time, we cannot
rely on a closed set classifier, even if it supports incremental
learning, because it implicitly assumes that all query data is
well represented by the training set.
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Fig. 1. A solution from the proposed EVM algorithm trained on
four classes: dots, diamonds, squares, and stars. The colors in the
isocontour rings show a  -model (probability of sample inclusion)
for each extreme vector (EV) chosen by the algorithm, with red near
1 and blue near .005. Via kernel-free non-linear modeling, the EVM
supports open set recognition and can reject the three “?” inputs that
lie beyond the support of the training set as “unknown.” Each  -
model has its own independent shape and scale parameters learnt from
the data, and supports a soft-margin. For example, the  -model for
the blue dots corresponding to extreme vector A has a more gradual
fall off, due to the effect of the outlier star during training.

Closed set classifiers have been developed for ap-
proximating the Bayesian optimal posterior probability,
P (C

l

|x0
; C1, C2, . . . , CM ), l 2 {1, . . . ,M}, for a fixed set

of classes, where x0 is an input sample, l is the in-
dex of class C

l

(a particular known class), and M is the
number of known classes. When ⌦ unknown classes ap-
pear at query time, however, the Baysian optimal posterior
becomes P (C

l̃

|x0
; C1, C2, . . . , CM , U

M+1, . . . , UM+⌦), ˜l 2
{1, . . . ,M +⌦}, a distribution that we cannot model because
classes U

M+1 through U⌦ are unknown. Making closed set
assumptions in training leads to regions of unbounded support
for an open set problem because a sample x0 from an unknown
class U

l̃

will be misclassified as a known class C
l

. For
classifiers that assess confidence in terms of signed distance
from a decision boundary, or some calibration thereof, this
misclassification will occur with high confidence if x0 is far
from any known data — a result that is very misleading.
Scheirer et al. [9] termed this problem open space risk.

More formally, let f be a measurable recognition function
for known class C, O be the open space, and S

o

be a ball
of radius r

o

that includes all of the known positive training
examples x 2 C as well as the open space O. Open space risk
RO(f) for class C can be defined as RO(f) =

R
O fC(x)dxR
S

o

fC(x)dx
,

where open space risk is considered to be the relative measure
of positively labeled open space compared to the overall
measure of positively labeled space. In this probabilistic for-
mulation, the objective of open set recognition is to exercise a
rejection option [10] for queries that lie beyond the reasonable
support of known data, thus mitigating this risk.
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Open set recognition [9], [11], [12], and more generally
novelty/outlier detection [13], [14] are well established areas
in their own right, but much less research has been conducted
on how to treat unknown samples in an incremental context,
which is the focus of this work. When an open set recognition
system labels a sample as unknown, it suggests that the model
was not trained with data from the class corresponding to that
sample. In response, the classifier’s decision boundaries should
be updated so that the system can incorporate this new class
information for future decision making. But there is a caveat:
full retraining is not always feasible, depending on timing
constraints and the availability of computational resources.

Recent work [5] extended the open set recognition problem
to include the incremental learning of new classes in a regime
dubbed open world recognition, which is the problem we
are most concerned with in this paper. An effective open-
world recognition system must perform four tasks: detecting
unknowns, choosing which points to label for addition to
the model, labelling the points, and updating the model.
An algorithm, nearest non-outlier (NNO), was proposed as
a demonstration of these elements — the first of its kind.
Unfortunately, NNO lacks strong theoretical grounding. The
algorithm uses thresholded distances from the nearest class
mean as its decision function, and otherwise ignores distribu-
tional information. Weak classifiers are a persistent problem
for this task: it is not immediately obvious how one might
extend class boundary models from classical machine learning
theory (e.g., neural networks and kernel machines) to incor-
porate both incremental learning and open set constraints. A
new formulation is required.

In this article we address the construction of a compact
representation of open world decision boundaries based on the
distribution of the training data. Obtaining this representation
is difficult because training points that do not contribute to
a decision boundary at one point in time may be extremely
relevant in defining a decision boundary later on, and retrain-
ing on all points is infeasible at large scales. Moreover, by the
definition of the open world problem, the hypothesis space will
be under-sampled, so in many cases linearity of the decision
boundaries cannot be guaranteed and the data bandwidth is
unknown. So how does one obtain a compact statistical model
without discarding potentially relevant points — especially in
regions where the data bandwidth is unknown? To this end, we
introduce the Extreme Value Machine (EVM), a model which
we derive from statistical extreme value theory (EVT).

EVT dictates the functional form for the radial probability
of inclusion of a point with respect to the class of another.
By selecting the points and distributions that best summarize
each class, i.e., are least redundant with respect to one another,
we arrive at a compact probabilistic representation of each
class’s decision boundary, characterized in terms of its extreme
vectors (EV), which provides an abating bound on open space
risk. This is depicted in schematic form in Fig. 1. When new
data arrives, these EVs can be efficiently updated. The EVM is
a scalable nonlinear classifier, with radial inclusion functions
that are in some respects similar to RBF kernels, but unlike
RBF kernels assume variable bandwidths and skew that are
data derived and grounded in EVT.

II. RELATED WORK

With respect to classifiers that mitigate open space risk at
classification time, the 1-vs-Set machine [9] approaches the
problem of open set recognition by replacing the half-space
of a binary linear classifier by bounding the positive data
with two hyperplanes. An algorithm similar to the 1-vs-Set
machine was described by Cevikalp and Triggs [15] for object
detection, where a binary classifier with a slab is combined
with a nonlinear SVDD classifier for just the positive class. In
later work, Scheirer et al. introduced the W-SVM for multi-
class open set recognition problems using nonlinear kernels,
with provable guarantees of open space risk reduction [12].
These nonlinear models were more accurate, but also more
costly to compute and store. For the more expansive problem
of open world recognition, Bendale and Boult modified the
Nearest Class Mean [16] algorithm by limiting open space risk
for model combinations and transformed spaces, resulting in
the NNO algorithm introduced in Sec. I, which we will use
as a baseline for comparison in Sec. V.

Other approaches exist for related problems involving un-
known class data such as multi-class novelty detection [17],
domain adaptation [18], and zero-shot classification [19].
However, these problems need not be addressed by a classifier
that is incrementally updated over time with class-specific
feature data. More related is the problem life-long learning,
where a classifier receives tasks and is able to adapt its
model in order to perform well on new task instances. Pentina
and Ben-David [20] lay out a cogent theoretical framework
for SVM-based life-long learning tasks, but leave the door
open to specific implementations that embody it. Along these
lines, Royer and Lampert [21] describe a method for classifier
adaptation that is effective when inherent dependencies are
present in the test data. This works for fine-grained recognition
scenarios, but does not address unknown classes that are well
separated in visual appearance from the known and other
unknown classes. The problem most related to our work is rare
class discovery, for which Haines and Xiang have proposed
an active learning method that jointly addresses the tasks
of class discovery and classification [22]. We consider their
classification algorithm in Sec. V, even though we do not make
distinctions between common and rare unknown classes.

There is growing interest in statistical extreme value theory
for visual recognition. With the observation that the tails of any
distance or similarity score distribution must always follow an
EVT distribution [23], highly accurate probabilistic calibration
models became possible, leading to strong empirical results for
multi-biometric fusion [24], describable visual attributes [25],
and visual inspection tasks [26]. EVT models have also been
applied to feature point matching, where the Rayleigh distri-
bution was used for efficient guided sampling for homography
estimation [27], and the notion of extreme value sample
consensus was used in conjunction with RANSAC for similar
means [28]. Work in machine learning has shown that EVT is
a suitable model for open set recognition problems, where one-
[11] and two-sided calibration models [12], [29] of decision
boundaries lead to better generalization. However, these are
post hoc approaches that do not apply EVT at training time.
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III. THEORETICAL FOUNDATION

As discussed in Sec. I and as illustrated in Fig. 1, each class
in the EVM’s training set is represented by a set of extreme
vectors, where each vector is associated with a radial inclusion
function modeling the Probability of Sample Inclusion (PSI or
 ). Here we derive the functional form for  from EVT; this
functional form is not just a mathematically convenient choice
— it is statistically guaranteed to be the limiting distribution
of relative proximity between data points under the minor
assumptions of continuity and smoothness.

The EVM formulation developed herein stems from the
concept of margin distributions. This idea is not new; various
definitions and uses of margin distributions have been explored
[30]–[34], involving techniques such as maximizing the mean
or median margin, taking a weighted combination margin,
or optimizing the margin mean and variance. Leveraging the
margin distribution itself can provide better error bounds than
those offered by a soft-margin SVM classifier, which in some
cases translates into reduced experimental error. We model  
in terms of the distribution of sample half-distances relative to
a reference point, extending margin distribution theory from a
per-class formulation [30]–[34] to a sample-wise formulation.
The model is fit on the distribution of margins — half distances
to the nearest negative samples — for each positive reference
point. From this distribution, we derive a radial inclusion
function which carves out a posterior probability of association
with respect to the reference point. This radial inclusion
function falls toward zero at the margin.

A. Probability of Sample Inclusion
To formalize the  -model, let x 2 X be training samples in
a feature space X . Let y

i

2 C 2 N be the class label for
x
i

2 X . Consider, for now, only a single positive instance
x
i

for some class with label y
i

. Given x
i

, the maximum
margin distance would be given by half the distance to the
closest training sample from a different class. However, the
closest point is just one sample and we should consider the
potential maximum margins under different samplings. We
define margin distribution as the distribution of the margin
distances of the observed data. Thus, given x

i

and x
j

, where
8j, y

j

6= y
i

, consider the margin distance to the decision
boundary that would be estimated for the pair (x

i

, x
j

) if
x
j

were the closest instance. The margin estimates are thus
m

ij

= kx
i

�x
j

k/2 for the ⌧ closest points. Considering these
⌧ nearest points to the margin, our question then becomes:
what is the distributional form of the margin distances?

To estimate this distribution, we turn to the Fisher-Tippett
Theorem [35] also known as the Extreme Value Theorem1.
Just as the Central Limit Theorem dictates that the random
variables generated from certain stochastic processes follow
Gaussian distributions, EVT dictates that given a well-behaved
overall distribution of values, e.g., a distribution that is con-
tinuous and has an inverse, the distribution of the maximum
or minimum values can assume only limited forms. To find
the appropriate form, let us first recall:

1There are other types of extreme value theorems, e.g., the second extreme
value theorem, the Pickands-Balkema-de Haan Theorem [36], addresses prob-
abilities conditioned on the process exceeding a sufficiently high threshold.

Theorem 1 (Fisher-Tippett Theorem [37]). Let (v1, v2, . . .)
be a sequence of i.i.d samples. Let ⇣

n

= max{v1, . . . , vn}.
If a sequence of pairs of real numbers (a

n

, b
n

) exists such
that each a

n

> 0 and lim

z!1 P
�
⇣

n

�b

n

a

n

 z
�
= F (z) then if

F is a non-degenerate distribution function, it belongs to the
Gumbel, the Fréchet or the Reversed Weibull family.

In other words for any sequence (a
n

, b
n

) of shifts and
normalizations of the samples such that the probability of
the maximum value converges, it converges to one of three
distributions2. From Theorem 1, we can derive the following:

Theorem 2 (Margin Distribution Theorem). Assume we are
given a positive sample x

i

and sufficiently many negative sam-
ples x

j

drawn from well-defined class distributions, yielding
pairwise margin estimates m

ij

. Assume a continuous non-
degenerate margin distribution exists. Then the distribution for
the minimal values of the margin distance for x

i

is given by
a Weibull distribution.

Proof. Since Theorem 1 applies to maxima, we transform the
variables via z = �m

ij

and consider the maximum set of
values �m

ij

. The assumption of sufficient samples and a well-
defined set of margin distances converging to a non-degenerate
margin implies that Theorem 1 applies. Let � be the associated
distribution of the maxima of ⇣

n

. Combining Theorem 1 with
knowledge that the data are bounded (�m

ij

< 0) means that
� converges to a reversed Weibull, as it is the EVT distribution
that is bounded from above [37]. Changing the variables back
(m

ij

= �z) means that the minimum distance to the boundary
must be a Weibull distribution.

Theorem 2 holds for any point x
i

, with each point estimat-
ing its own distribution of distance to the margin yielding:

Corollary 1 ( Density Function). Given the conditions for
the Margin Distribution Theorem, the probability that x0 is
included in the boundary estimated by x

i

is given by:

 (x
i

, x0
;

i

,�
i

, ) = exp

�
⇣ ||x

i

�x

0||
�

i

⌘


i

(1)

where ||x
i

� x0|| is the distance of x0 from sample x
i

, and

i

, �
i

are Weibull shape and scale parameters respectively
obtained from fitting to the smallest m

ij

.

Proof. The Weibull cumulative distribution function (CDF)
F
W

(||x0�x
i

||;
i

,�
i

) provides the probability that the margin
is at or below a given value, but we seek the probability
that x0 does not exceed the margin yielding the inverse:
1� F

W

(||x0 � x
i

||;
i

,�
i

) (cf. Eq. 1).

The  -model defines a radial inclusion function that is
an EVT rejection model where the probability of inclusion
corresponds to the probability that the sample does not lie
well into or beyond the negative margin. While  is designed
to have zero probability around the margin, half-way to the
negative data, the model still supports a soft margin because
the EVT estimation uses ⌧ points and hence may cover space
with both positive and negative points. However, this does not
force the model to include any positive training samples within
its probability of inclusion.

2A more thorough introductory overview of EVT can be found in [38].
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B. Decision Function
The probability that a query point x0 is associated with class
C
l

is ˆP (C
l

|x0
) = argmax{i:y

i

=C
l

} (x
i

, x0
;

i

,�
i

). Given ˆP ,
we compute the open set multi-class recognition result for x0.
Let threshold � on the probability define the boundary between
the set of known classes C and unsupported open space [9] so
that the final classification decision is given by:

y⇤ =

(
argmax

l2{1,...,M} ˆP (C
l

|x0
) if ˆP (C

l

|x0
) � �

“unknown” Otherwise.
(2)

A principled approach to selecting � is to optimize the
tradeoff between closed set accuracy and rejection of unknown
classes via cross-class validation [5] on the training set,
leaving out a subset of classes as “unknown” at each fold.
A slight generalization of the decision function in Eq. 2
is to average over the k-largest probabilities for each class.
For all experiments in Sec. V we selected a k value via
a hyperparameter search on non-test data, choosing k from
{1, . . . , 10}. In practice, we found that a choice of k > 1

yields only slight performance gains of 1-2% in accuracy.

IV. EVM FORMULATION

With the  -models, we can develop an algorithm that is
not only advantageous for open world recognition, but is also
useful for limiting trained model size and obtaining favorable
scaling characteristics. The pseudocode for this algorithm is
provided in the supplemental material for this paper. Corre-
sponding source code will be made available after publication.

A. Model Reduction
Keeping all  -models and associated data points results in
larger models and longer classification times as dataset sizes
increase, which is undesirable in both incremental and re-
source constrained scenarios. The success of sparse classi-
fication algorithms in other problem domains (e.g., SVM)
suggests that we can strategically discard many redundant
hx

i

, (x
i

, x0,
i

,�
i

)i pairs within a class C
l

of N
l

training
points with minimal degradation in classification performance.
Intuitively, if many points that characterize the class in ques-
tion are sufficiently close to one another compared to points
from negative classes, then we expect redundancy in their
 responses. By thresholding on a minimum redundancy
probability, we can select a subset of points that character-
ize the class. While many strategies can be used for this
selection, we wish to select the minimum number of points
required to cover the class. We can formulate this strategy
as a minimization problem: Let x

i

be a point in the class
of interest and  (x

i

, x0,
i

,�
i

) be its corresponding model.
Without loss of generality, let x

j

be another point in the same
class with model  (x

j

, x0,
j

,�
j

). Let & be the probability
threshold above which to designate redundancy of the pair
hx

j

, (x
j

, x0,
j

,�
j

)i with respect to hx
i

, (x
i

, x0,
i

,�
i

)i,
such that if  

i

(x
i

, x
j

,
i

,�
i

) � & then hx
j

, (x
j

, x0,
j

,�
j

)i
is redundant with respect to hx

i

, (x
i

, x0,
i

,�
i

)i. Finally, let
I(·) be an indicator function such that

(
I(x

i

) = 1 if hx
i

, (x
i

, x0,
i

,�
i

)i kept
I(x

i

) = 0 otherwise.
(3)

If x
i

and  (x
i

, x0,
i

,�
i

) are retained, they become extreme
vectors defining the final model. We can then express our
optimization strategy in terms of this objective function:

minimize
N

lX

i=1

I(x
i

) subject to (4)

8j9i|I(x
i

) (x
i

, x
j

,
i

,�
i

) � &. (5)

The constraint (Eq. 5) requires that every
hx

i

, (x
i

, x0,
i

,�
i

)i pair be an EV or be covered by
at least one other pair. Note that the implicit binary constraint
in the range of I(·) makes the optimization an integer
linear programming problem. The formulation in Eqs. 4
and 5 is a special case of Karp’s Set Cover problem.
We can see this by defining a coverage set of indices
s
i

⌘ {j 2 {1, .., N
l

}| 
i

(x
i

, x
j

,
i

,�
i

) � &} for each
hx

i

, 
i

(x
i

, x0,
i

,�
i

)i pair and a universe U = {1, .., N
l

}.
The objective of the Set Cover problem is then to select
the minimum number of sets that contains all elements of
U . While Set Cover is NP-hard, we employ the greedy
approximation described in [39] that offers a polynomial time
(1 + ln(N

l

)) approximate solution (cf. Theorem 2 in [39]).
This algorithm offers the smallest error bound for any
polynomial time approximation. The greedy approximation
entails selecting the sets of highest cardinality at each step.
The upper bound in approximation error is (1�o(1)) · ln(N

l

),
where N

l

is the cardinality of the universe of set elements.
Note that with the model fitting, an outlier is generally

covered by a point from another class (see Fig. 1), and such
outlier points are also unlikely to cover many other points.
Thus, outliers are added to the coverage set very late, if at
all. This is not an ad hoc assumption; it is an outcome of
the process of minimizing the number of points that cover
all examples. Like the inherent softness of the margin, this is
an inherent part of the model-reduction approach that follows
from the EVT-modeling.

B. Incremental Learning
Once EVs have been acquired for the EVM, the model can be
updated with a new batch of data by fitting  -models for the
new data using both the current EVs and all points in the new
batch of data. The new EVs are obtained by running model
reduction over both the old EVs and the new training points.
While new points can be added individually, adding data in
batches will result in more meaningful fits because batches
represent a richer distributional sample at each increment.
This means that newly added training points may or may
not become EVs and new classes can also impact previously
learned models and EVs. The efficient model reduction tech-
nique discussed in Sec. IV-A allows the EVM to limit the size
of its models either probabilistically via an explicit selection
of & or by a specific maximum number of EVs in a max-k
cover greedy approach [40]. This allows the EVM to scale
to many different incremental problems via different modes
of operation. In Sec. V-B, for example, we choose a static
& and perform model reduction using this threshold at each
training increment for classes to which data get added. While
this limits the growth in model size, the number of EVs still
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Fig. 2. Multi-class open set recognition performance on OLETTER.
The x-axis represents the percentage of classes in the test set that
were unseen during training. Error bars show standard deviation. The
EVM is comparable to the existing state-of-the-art W-SVM [12] in
F1-Measure, but at a substantial savings in training efficiency and
scalability, as reflected in the vector ratio (VR). The EVM’s VR is
an order of magnitude smaller than the two SVM-based models.
Both EVM and W-SVM algorithms have favorable performance
degradation characteristics as the problem becomes more open. The
two other probabilistically calibrated algorithms degrade far more
rapidly. Hyperparameters of ⌧ = 75 (tail size) and k = 4 (number of
EVs to average over) were used in this evaluation, and were selected
using the same training set cross validation technique as the W-SVM.

increases over time. Bounded optimization would specify a
maximum per-class size or maximum total size, recalculating &
at each increment. Alternatively, maximum model sizes could
be pre-specified with model reduction performed only when
the maximum size is violated. Thus, the EVM is not only an
incremental classifier, but it is an incremental classifier whose
size can be controlled at each learning increment.

V. EXPERIMENTAL EVALUATION

We conducted several evaluations in which we compared
the EVM to other open set and open world classifiers on
published benchmarks, including the state-of-the-art for both
problems. To ensure valid comparisons and consistency with
previous research where applicable, we report the results of
these evaluations using the same evaluation measures and
thresholds that were used in the original benchmark settings.
For all of the experiments in this section we selected a & value
of 0.5 based on the probabilistic assumption that points with
greater than 50% probability of being covered by others in
that class are redundant with respect to the model.

A. Multi-class Open Set Recognition on Letter
To establish the ability of the the EVM to identify unknown
classes, we first looked at the problem of multi-class open set
recognition. Scheirer et al. developed the OLETTER proto-
col [12] to evaluate classifiers in an open set recognition con-
text. It consists of randomly selecting 15 distinct labels from
the Letter dataset [41] as known classes during training and
adding unknown classes by incrementally including subsets of

the remaining 11 labels during testing. This process is repeated
over 20 folds to calculate averages and error bars. For con-
sistency with [12], we report results in terms of F1-Measure
(over precision and recall), and dynamically set a threshold on
open space � =

1
2

⇣
1�p

(2⇥ C
T

/(C
R

+ C
E

))

⌘
, where C

R

is the number of classes to be recognized (common to training
and testing), C

T

is the number of classes used in training, and
C

E

is the number of classes used in evaluation (testing).
For the OLETTER evaluation, we used Euclidean distance

to compute the margins for our EVM. We evaluate model
compactness in terms of the vector ratio, defined as VR =

# points retained by model
total # training points . The VR is a scaled form of the support

vector ratio introduced by Vapnik to provide an approximation
of generalization error [42], [43]. This allows us to compare
the scalability of different nonlinear models.

Fig. 2 shows results for all of the evaluated algorithms,
including the open set-specific W-SVM [12], which is cur-
rently the best performing algorithm in the literature for this
problem. Results for Nearest Neighbor (NN) classifiers with
CAP probability estimation [12], and 1-vs-Rest RBF SVMs
with Platt’s probability estimator [44] are also shown. Other
calibrated models assessed in [12] performed significantly
worse and are not shown. We selected RBF parameters for the
SVMs via 5-fold cross validation on the training dataset, using
a grid of C = 2

�5, 2�3, . . . , 215 and � = 2

�15, 2�13, . . . , 23,
consistent with [45].

The EVM performs comparably to the W-SVM, and outper-
forms all other algorithms. The W-SVM is certainly a viable
algorithm for this dataset, but its slight advantage comes at a
greater cost than the EVM, requiring two trained SVM models
(per-class: one 1-class and one binary) for its operation. The
vector ratio for this experiment is computed for models trained
on all 26 classes. For the evaluation in Fig. 2, the EVM’s
vector ratio is an order of magnitude smaller than that of any of
the SVM models, indicating that for the chosen & (0.5), fewer
than half of the training data points were included as EVs.
The number of support vectors in the SVM models is greater
than the number of points in the training set. This is due to
redundancy in support vectors kept in the multi-class regime.
Although Platt-Calibrated SVM model processing and storage
costs can be reduced by caching duplicated support vectors, the
computational savings is less feasible for the W-SVM, since
it uses different SVM models with multiple kernels. This is
because different RBF kernels require different calculations
even if they are centered on the same point. Also, for the
EVM, and unlike the W-SVM, we can easily obtain a lower
vector ratio while minimizing any degradation in accuracy.
We analyze this tradeoff in Sec. VI. Finally, we would like
to mention that, apart from the EVM, none of the classifiers
whose performance is depicted in Fig. 2 support incremental
learning, so they cannot be applied to open world problems.

B. Open World Recognition on ImageNet
Open world recognition, the problem we are most concerned
with, consists of three distinct phases [5]: one initial training
phase, followed by alternating phases of open set recogni-
tion and updates to incorporate newly labeled data into the
model. We evaluated open world recognition performance on
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Fig. 3. Open world performance of the EVM and NNO algorithms on the open world ImageNet benchmark in terms of both F1-mearsure
(left) and accuracy (right). Initial training considering 50 classes was performed, then classes were incrementally added in groups of 50. The
EVM dramatically outperforms NNO at all points evaluated and the divergence of the respective surfaces suggests superior scalability with
respect to both the number of additional training classes and the number of additional unknown classes. Hyperparameter values of k = 6
and ⌧ = 33998 were selected using the cross validation procedure discussed in the text.

a benchmark protocol that uses an open world partition of
ImageNet introduced in [5]. The protocol consists of an
initial training phase on 50 classes, performing classification
with 0, 50, 100, 150, and 200 unknown classes in the test
set. At each increment another group of 50 classes is added,
and classification is again performed on test instances from
known classes, with samples from 0, 50, 100, 150, and 200
additional unknown classes. One manner in which we depart
from the protocol in [5] is that instead of using dense SIFT
features, which are no longer state-of-the-art, we use a 4,096-
dimensional deep feature space representation derived from the
fc7 layer of AlexNet [46]. This is a much better representation
for today’s visual recognition tasks.

We compared the EVM’s computational performance with
the state-of-the-art NNO algorithm [5] on this benchmark,
as well as the incremental KDE classification algorithm em-
ployed by Haines and Xiang in [22] that had heretofore not
been tested on this benchmark, or any particularly large-
scale benchmark, in terms of either number of samples or
dimensionality. While both the EVM and the NNO algorithms
completed in a matter of hours, the incremental KDE classifier
had enrolled fewer than 40 samples after 24 hours. Assuming
a constant rate of enrollment, it would take approximately 18
years for the benchmark training experiment to complete, lead-
ing us to conclude that the approach, at least as implemented,
is not scalable, and therefore report recognition results for just
the EVM and NNO algorithms.

For training and testing, we used the ILSVRC2014 training
and validation partitions respectively. For consistency with [5],
we selected an NNO rejection threshold via 3-fold cross-class
validation on the first 50 classes from the training set. This
is also how we selected � for the EVM, searching over a
range of [0.05, 0.1, . . . , 0.3]. Hyperparameters k and ⌧ were
obtained via a Bayesian search using the hyperopt library [47].
The Bayesian search conducted with hyperopt consisted of 50

iterations of three-fold cross-validation over the first 50 classes
of the training set. The hyperparameter ranges consisted of
1-10 for k and 100-32,000 for ⌧ . Noting that 3-fold cross
validation reduces the size of the training set by 1/3, and
assuming a rough proportionality on these hyperparameters
to training set size (and increment batch size), we multiplied
the selected values by 1.5 and rounded to the nearest integer
value to arrive at hyperparameter selections used for training.

During our ImageNet experiments, we found that Euclidean
distance led to poor performance when computing margins
for the EVM. This is consistent with the previous finding
that Euclidean distance does not work well when comparing
deep features of individual samples [48]. We therefore turned
to cosine similarity, which is a commonly used measure of
divergence between samples in a deep feature space. NNO still
performed reasonably well when using Euclidean distance;
which we suspect is because it compares samples with respect
to class means. However, when cosine similarity was used, the
classifier rejected nearly all test samples as unknown. Thus,
we report the best results for each classifier, using cosine
similarity for the EVM and Euclidean distance for NNO.
These results are shown in Fig. 3.

The EVM consistently and dramatically outperforms NNO,
both in terms of accuracy and F1-Measure. Readers might
wonder why the EVM’s accuracy increases as the number
of classes are added; this is because the EVM is a good
rejector and is able to tightly bound class hypotheses by their
support. However, it does so while simultaneously maintaining
reasonable classification performance. While NNO models the
deviation from class means according to a support bound, such
a rigid and over-simplified model of each class yields a poorer
performance trend than the EVM delivers, hence the overall
divergence of the surface plots in Fig.3. Finally, we note that
with the chosen value & = 0.5, the EVM provides significant
reductions in model size over using all points (cf. Table I).
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TABLE I
NUMBERS OF EXTREME VECTORS, CUMULATIVE NUMBERS OF TRAINING

POINTS USED, AND VECTOR RATIOS AFTER EACH BATCH IS ADDED.

Batch 0-50 50-100 100-150 150-200
# EVs 16309 35213 52489 74845
# Points 64817 129395 194217 255224
Vector Ratio 0.25 0.27 0.27 0.29

VI. PRACTICAL CONSIDERATIONS FOR THE EVM
The model reduction strategy that we employed in Sec. V of

selecting a threshold & and running the Set Cover algorithm is
a simple way to increase efficiency at classification time and
achieve a compact representation of the training set. While
our experiments in Sec. V used a probabilistically motivated
choice of & = 0.5, what constitutes a good redundancy
threshold in practice is often tied to the computational, storage,
or time budget of the problem at hand. The model must
therefore be sized accordingly so that it does not exceed the
maximum budget, while still maintaining as good performance
as possible. We refer to this as the budgeted optimization
problem in which the objective is to obtain the most repre-
sentative model achievable that meets but does not exceed
the budget. We can perform this selection via a binary search
for & , for which the optimization, given a target budget, most
closely returns the requested number of EVs. Since the greedy
optimization selects EVs in order of their coverage, we can
easily retain only the most important of these EVs. This allows
EVM classifiers to be approximately portable across many
device types of heterogeneous computational capabilities.

We performed an evaluation of this technique on the closed
set Letter dataset, using all points in the training set (& = 1.0),
which yielded a base accuracy of 96%. Using 50% of the
data (& = 0.492) or 40% of the data (& = 0.186) yielded
accuracies comparable to using all points. Reducing to 10%
of the training points (& = 0.008) yielded an accuracy of 92%.
This suggests that budgeted optimization is quite effective for
classifier compression/portability, and that & can assume a very
wide range with minimal impact on classification performance.

With respect to computational efficiency, much of the
EVM’s training procedure can be performed independently on
a class-by-class basis, making the algorithm well suited for a
cluster or GPU implementation. Each statistical fit, made via
Maximum Likelihood Estimation (MLE), is fast and constant
in time complexity, due to a cap on the maximum number of
iterations. Model reduction is O(N2

l

), where N
l

is the number
of points in class C

l

. The complexity of each tail retrieval,
given N training points, can be reduced from O(NlogN) to
O(⌧ logN) by introducing space partitioning data structures,
e.g., k-d trees [49]. However, employing them may impose
constraints on the types of measures used to compute the
margin — the common requirement that the distance function
be a strict metric on the hypothesis space precludes quasi-
metrics such as cosine similarity.

While the EVM may appear to be highly parameterized, the
per point Weibull scale and shape parameters are purely
data derived and are automatically learnt during training.
They are a function of the MLE optimization process, which

we must distinguish from hyperparameters selected prior to
fitting. The only hyperparameters are ⌧ , k, and & . As we have
previously discussed, barring hard model size constraints (e.g.,
in budgeted optimization), a wide range of cover probability &
values work well, including the probabilistically driven choice
of 0.5 used in the experiments in Sec. V. With respect to
the value k, the number of models to average, we found
that searching over {1, . . . , 10} on a validation set yielded
slightly better results on the test set (with further decreased
performance for k > 10), although performance variations
over this parameter range typically accounted for less than
2% in accuracy or F1-measure respectively. Thus, while &
and k might have a slight impact on performance, the vast
majority of performance variation can be attributed to only a
single hyperparameter, namely ⌧ .

Unfortunately, EVT provides no principled means of select-
ing the tail size ⌧ . The theory only dictates the family of distri-
bution functions that will apply and proves convergence for an
unspecified ⌧ . We use cross-class validation for selecting ⌧ that
yields optimal cross-validation accuracy with missing classes.
For the selection of ⌧ obtained on the OLETTER dataset
through cross-class validation, the value ⌧ = 75 accounts
for only 0.5% of the 15K OLETTER training set and that
small a fraction represents plausible extrema. However, the
results of applying the cross-class validation methodology
discussed in Sec. V-B for our ImageNet experiments might
raise questions since the selected tail size (⌧ = 33998)
consists of approximately half the number of samples in the
training set. This result is surprising and counter-intuitive
because one would not ordinarily think of “half of the data”
as being extreme values. But looking at a fraction of data is
probably the wrong way to determine the boundary or extreme
points. While the EVM’s  -models are fit on 1D margins,
the high dimensionality of the feature space (4,096) translates
into many more directions yielding “boundary points” than
for the relatively low-dimensional (16) OLETTER dataset.
Normalizing for feature dimensionality and the number of
classes we find both examples are similar. Dividing the tail
size used for the first batch of ImageNet by the dimensionality
of the feature space and number of classes yields 0.17 points
per dimension per class. Doing the same for OLETTER, we
obtain 4.69 points per dimension and an average of 0.17 points
per dimension per class.

VII. CONCLUSION

Perhaps the most important conclusion of this work is that
the EVM is able to do kernel-free nonlinear classification.
Interestingly, the EVM shares some relationships with radial
basis functions. When  = 2, the functional form of Eq. 1 is
the same as a Gaussian RBF, and when  = 1 it is the same
as an exponential or Laplacian RBF. While these  values
can occur in practice,  assumes a much broader range of
values, which are generally larger. Furthermore for  > 2,
Eq. 1 is not a Mercer kernel. Alternatively, if one approximates
Eq. 1 by a weighted sum of Gaussians (or Laplacians) we have
two different ways of viewing a Gaussian (or Laplacian) RBF
kernel as an approximation of a  -model. While the  -model



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.??, NO. ??, MARCH 2017 8

parameters vary in scale and shape with the bandwidth and
density of the data set, in a Gaussian approximation the num-
ber of kernel elements and/or the accuracy of approximation
must vary spatially. The EVM requires the fewest points for
the margin distribution and its  -model. For the EVM, we
do not make an ad hoc assumption of a kernel trick nor
a post hoc assumption of a particular kernel function; the
functional form of the  -model is a direct result of EVT
being used to model input space distance distributions.

The Weibull fitting ensures that a small number of mis-
labeled points or other outliers will not cause the margin
estimated from the Weibull to be at that location. If the
fitting includes more distant points, the  -model will broaden
in scale / shape providing a naturally derived theory for
the “softness” in its margin definition. However, the overall
optimization with Set Cover currently lacks a parameter to
adjust the risk tradeoff between positive and negative classes.
Future directions of research may include directly extending
the EVM by obtaining a better parameterized soft-margin
during Set Cover, perhaps by adding weights to balance
soft-margin errors and formulating the problem in terms of
linear programming. Another potential extension would be to
incorporate margin weights in a loss function in an SVM-style
optimization algorithm.
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