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What is Failure in a biometric Why not just use image Computational Efficiency
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Statistical Type | Error “Quality is not in the eye of the beholder; it is in the :;T:;)sgiiig;ir;r?ﬁtem) 's considered in two pieces: training and

recognition performance figures!”’

* Animposter has achieved a match within the gallery Training: To sort quickly gather the top k (never exceeding 10

in this work) scores out of » total scores, bucket sort can be
used, requiring O(n) operations. Computation for our best
47 performing feature, A, ; , is a simple series of linear operations

 Quality, while a solid predictor overall, can sometimes be

Statistical Type Il Error misleading for “per instance” failure prediction.

* A probe fails to match out of the top n scores for rank n

recognition (subtraction over a set of scores), and is thus O(M) over M
- - . . 5 images of varying quality, and score series composed of the top & scores for each series. The
Why is failure predlctlon lmportant? associated rank scores, along with the offline training of a SVM is computationally expensive, with a
- Per instance failure prediction is critical for sensitive original gallery image for comparison. time complexity of O(M") over M training examples (feature
installations, screening areas, and surveillance posts Apparent quality is not always vectors derived from the M score series). The complete time
’ ’ correlated with rank! needed for training the system is O(n + M + M?) per classifier.

* The recent case of Columbian drug cartel leader Juan vid ¥ ex o e . .
Carlos Ramirez Abadia highlights the need for failure 138 Gallery Classification: SVM classification is a linear operation of O(M).

Y . " . . The complete time needed for classification is O(n + M) for
prediction in biometric recognition. Ramirez Abadia . . . L. .
underwent plastic surgery to evade facial recognition, but The process flow of a of a multi-modal recognltlon both fusion before SVM classification and for fusion after SVM
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s spehenaec wih 1 i f vl ecognton system incorporating failure prediction based fusion |~ Seiiieelon whero o oxa pass over e Sl marginal

time systems.
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eecto Recognition Failed (not ¥) | The first set of experiments evaluates the performance of
ejecte | : : . :
i . g . > Rejection Failed (was in DB) i the fusion techniques over the baseline features for failure
Failure Prediction (not in DB) | - N o
i prediction. The expectation is that the fused prediction
| . . .
. | Fusion i techniques will perform no worse than the original features,
Failure Predicted 4 _ e e d _
N Threshold Sistribution of Acquire more data Engine and in most cases, outperform them. FPROC curves follow.
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Case 2: False Accept For all features: sort all distance measurements or similarity scores from best to S . T e |
Case 1: FaI?e Accept, ore diction of failure to the worst, take the minimum of minimums over all views for each gallery entry, then i g e W erge o
prediction of success f consider the top & scores for feature vector generation. P Aot Aot B oo e o e
contrary to ground-truth contrary of ground-truth ~ ' s
o Case 4- correct orediction of * A;;.. rdefined as ((sorted score i) - (sorted score j), (sorted score i) -
Case 3: correct prediction of frilre P (sorted score j+1), . . ., (sorted i) - (sorted score k)), where j =i + 1. J
SUCCESS Feature vectors may vary in length, as a function of the index i.
The FPROC curve is defined by the FPFAR and FPMDR * DCT coefficients produced from the top » scores ;
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on quality inflates the Threshold over all decisions individual thresholds across all failure prediction fusion-based system. By predicting failure,
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