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—1 Motivation
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Visual attributes are a powerful approach for recognition, retrieval, image
description and scene understanding. For example:

More white than
Alex Rodriguez

2% |
—

White: yes; Brown: no
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How do you calibrate multiple attribute applications for a single application?

Drawbacks
Not calibrated
Most distributions are not Gaussian
Combinatorial constraints

Previous Approaches
Use raw outputs
Fit to a Gaussian
Combine using SVM

Proposed Approach: Normalize scores using Multi-Attribute Spaces

Normalized
Multi-Attribute Space
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Unnormalized
Attribute Scores

“Men with Beard
and Pale Skin”
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Distance between raw attribute
values does not correspond
with visual similarity

Distances between points in a
multi-attribute space correspond
with perceptual visual similarity

Benefits

e Calibrated scores correspond to probability of human labels
e Greatly improves multi-attribute search queries

e Allows for “target attribute similarity searches”

e Does not assume any particular distribution over all scores
e Requires no ground truth labeling

e Fast and easy to compute

e \Widely applicable to many types of attributes

/— Calibration of SVM Decision Scores
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Goal: Map a set of raw binary SVM outputs to probabilities that humans would
assign given labels to images.

Problem: Outputs from SVM do not follow a standard distribution.
SVM decision score distributions for 3 classifiers:
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e SVM scores that are far away from the decision boundary are not very informative

e The overall distribution can vary quite a bit depending on the data

e But values close to the decision boundary (around 0) are much more informative

e |[f scores are bounded from above and below, the Extreme Value Theory says that
values in the tail must come from the Weibull distribution

e S0 given a set of SVM scores, a Weibull can be fit using the values in the tail

e The Welibull CDF gives the expected probability of a label being assigned an SVM value

Algorithm
Weibull Fit to Tail

w-scores = CDF of @
Near Decision Boundary

Not Male Weibull Model
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— Combining Calibrated Attributes
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\ { Quantitative Evaluation
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s7= | A/ |lx
A1) = F(I(s/(1)); W))
O0<o<A4()<pi<1

1. maximize over /
2. subject to
3. for Vj € J satisfying

maximize the L; norm for each
attribute j in the query set J

The goal is to find images / that

Multi-Attribute Search

“Indian Eemales” “Male and Black Hair Like Target”
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Target Attribute Similarity Search

—| Multi-Attribute Queries

Kumar et al. 201 | Our Multi-Attribute Space Approach

Query: Women with Pale Skin
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Query: Chubby Indian Men with Mustache

Query: White Babies Wearing Hats
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Kumar et al.
Proposed Approach

User Study: Which search results
are more relevant for 900 trials?

86.9%

Using 120,000 collected human i
rankings, we evaluated the statistical Key:
significance of improvements in target
attribute similarity search results

across 12 queries. Results shown in - no statistical significance

** statistical significance at p = 0.01
* statistical significance at p = 0.05

&Beard  pgje skin  Bangs Pale Skin Bangs

Do query-only rankings match human ranking?

Conclusions:
e Both algorithmic rankings match human rankings well
e Contextual attributes improve results for some queries but not others
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1. Get tall of decision scores from the opposite class
2. Fit Welibull to values in the tail:

k(z\k—1,—(z/N)" > ()
Flaih k) = 4 A "

0 x < 0

3. Compute normalized scores using CDF of the Weibull:
F(x;k,A\)=1— e~ (@/X)"

Target Attribute Similarity Searches

Which image has more similar
Blonde Hair and Rosy Cheeks to the
one on the top!?

Similarity search results for “blonde hair and rosy cheeks”
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(a) Example of worker task (c) Using given attributes and contextual attributes
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rings denoting top-5, top-10, etc. >
Black Hair Pointy Nose Black Hair Pointy Nose
Black.l-.law Pointy Nose Black.l-.lalr Pointy Nose
& Smiling 2 Beard & Smiling &Beard
&Bangs &Bangs 5
Rosy Rosy Rosy Rosy
Cheeks Cheeks Cheeks Cheeks
&Blond &Blond &Blond Hai &Blond
Hair | o0 30 40 Hair &Lipstic 20 30 40 Hair
Chubby et Chubby Chubby . #*7 T Ly Chubby
&Round Face &Round  &Round Face &Round

&Round Nos Face &Round Nose Face
Pale Skin® Bangs Pale Skin & *" Bangs
&Pointy Nose &Black Hair &Pointy Nose &Black Hair
&Beard

Are query+context rankings better than query-only?

~N

/—i Software & References

e The Search Engine: http://mughunt.securics.com
e The Attribute Service: http://afs.automaticfacesystems.com
e The Meta-Recognition Library: http://www.metarecognition.com
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