How Reliable Are Your Visual Attributes? Walter J. Scheirer^{1,5}, Neeraj Kumar², Vijay Iyer³, Peter N. Belhumeur⁴, and Terrance E. Boult^{3,5} ¹Harvard University | ²Univ. of Washington | ³Securics, Inc. | ⁴Columbia University | ⁵ Univ. of Colorado, Colorado Springs ## **Attribute Reliability Studies** Visual attributes are a powerful approach for recognition, retrieval, image description and scene understanding. For example: Ferrari and Zisserman NIPS 2007 Farhadi et al. CVPR 2009 White: yes; Brown: no Stripes: no; Water: yes Lampert et al. CVPR 2009 Alex Rodriguez More white than Parikh and Grauman ICCV 2011 Attribute Classifier A_{α} ## How do you determine the useable conditions of an attribute classifier? #### Benefits - Defined methodology for generating images with degradation effects - Controlled degradations can be used to evaluate any attribute classifier - Differential probabilistic model for accuracy assessment - Principled algorithm based on statistical extreme value theory - Requires no ground truth labeling - Fast and easy to compute - Significant compression benefits for mobile applications # How to Conduct a Probabilistic Study Assume a distribution of decision scores $\{s_1,...,s_n\}, s_i \in S$, from a binary classifier. We want a probabilistic indication of correct attribute assignment. For each score s_i , we produce a corresponding normalized w-score w_i , which is a probability score. To produce a more useful reliability representation, compute the difference between the average w-score for original images, and the average w-scores across transformation intervals. ### **Software & References** - The MugHunt Search Engine: http://mughunt.securics.com - The Meta-Recognition Library: http://www.metarecognition.com - 1. N. Kumar, A.C. Berg, P.N. Belhumeur and S.K. Nayar, "Describable Visual Attributes for Face Verification and Image Search," *IEEE TPAMI*, 33(10): 1962-1977, Oct. 2011. - 2. W.J. Scheirer, A. Rocha, R. Micheals and T.E. Boult, "Meta-Recognition: The Theory and Practice of Recognition Score Analysis," IEEE TPAMI, 33(8): 1689-1695, Aug. 2011. - 3. W.J. Scheirer, N. Kumar, P.N. Belhumeur and T.E. Boult, "Multi-Attribute Spaces: Calibration for Attribute Fusion and Similarity Search," IEEE CVPR, June 2012.