How Reliable Are Your Visual Attributes?
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Visual attributes are a powerful approach for recognition, retrieval, image
description and scene understanding. For example:
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How do you determine the useable conditions of an attribute classifier?
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Benefits

e Defined methodology for generating images with degradation effects

e Controlled degradations can be used to evaluate any attribute classifier
e Differential probabilistic model for accuracy assessment

e Principled algorithm based on statistical extreme value theory

e Requires no ground truth labeling

e Fast and easy to compute

e Significant compression benefits for mobile applications
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”_ Attribute Reliability Studies \ 'How to Conduct a Probabilistic Study

Assume a distribution of decision scores {si1,....sx}, si € S, from a binary classifier.
We want a probabillistic indication of correct attribute assignment.

Fit Weibull to tail of weakly normalized data,
e.g. Fit on NOT Asian
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Normalize using probability of Asian

Example: fit Gaussian to decision
scores, weakly normalize n =

1

V. =\ % Y%, = CDF of NOT Asian Weibull model
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For each score s;, we produce a corresponding normalized w-score w;, which is a
probability score.

To produce a more useful reliability representation, compute the difference
between the average w-score for original images, and the average w-scores
across transformation intervals.

-8 = Average w-scores: African American -l - Average Decision Scores: African American

== Difference w-scores: African American == Difference Decision Scores: African American
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Software & References
e The MugHunt Search Engine: http://mughunt.securics.com

e The Meta-Recognition Library: http://www.metarecognition.com

1. N. Kumar, A.C. Berg, P.N. Belhnumeur and S.K. Nayar, “Describable Visual Attributes for Face Verification and
Image Search,” IEEE TPAMI, 33(10): 1962-1977, Oct. 2011.

2. W.J. Scheirer, A. Rocha, R. Micheals and T.E. Boult, “Meta-Recognition: The Theory and Practice of
Recognition Score Analysis,” IEEE TPAMI, 33(8): 1689-1695, Aug. 2011.

3. W.J. Scheirer, N. Kumar, P.N. Belhumeur and T.E. Boult, “Multi-Attribute Spaces: Calibration for Attribute Fusion
and Similarity Search,” IEEE CVPR, June 2012.



http://mughunt.securics.com
http://mughunt.securics.com
http://www.metarecognition.com
http://www.metarecognition.com

