Literary and Linguistic Computing: Motivation and a Prodigious Case Study

W.J. Scheirer Department of Computer Science University of Colorado at Colorado Springs

The Part About the Critics...

Warnings

"Regenerations, reproductions, returns, hydras, and medusas do not get us any further... This is evident in current problems in information science and computer science, which still cling to the oldest modes of thought in that they grant all power to a memory or central organ."

vast.uccs.ed

Deleuze and Guattari, A Thousand Plateaus, Introduction: Rhizome

Warnings

"People degrade themselves all the time in order to make machines seem smart."

"...a new philosophy: that the computer can understand people better than people can understand themselves."

vast.uccs.ed

"We have repeatedly demonstrated our species's bottomless ability to lower our standards to make information technology good, but every manifestation of intelligence in a machine is ambiguous."

Jaron Lanier, "The Serfdom of Crowds," Harper's, Feb. 2010

Warnings

In the early 1960s, it was "envisioned that building a thinking machine would take about a decade."

"By the mid-1980s, many scientists both inside and outside of the artificial intelligence community had come to see the effort as a failure."

NY Times, "Optimism as Artificial Intelligence Pioneers Reunite," Dec. 7, 2009

Inklings

New logics are always still about "questions of logic and existence"

"mathematics and the formalization of discourse"

vast.uccs.ed

"information theory and its application to the analysis of life"

Foucault, The Archaeology of Knowledge

Inklings

"INFORMATION = ENTROPY"

"Here we have not spoken of information except in the social register of communication. But it would be enthralling to consider this hypothesis even within the parameters of cybernetic information theory."

vast.uccs.ed

Jean Baudrillard, *Simulacra and Simulation*, VII. The Implosion of Meaning in the Media

And More Warnings

"And more than one English graduate student has written papers trying to apply information theory to literature -- the kind of phenomenon that later caused Dr. Shannon to complain of what he called a 'bandwagon effect'."

"Information theory has perhaps ballooned to an importance beyond its actual accomplishments."

vast.uccs.ed

NY Times, "Claude Shannon, Mathematician, Dies at 84," Feb. 27, 2001

Software Tools

Write programs that do one thing and do it well.

*Especially what you might already be doing by hand.

vast.uccs.edu

Software Tools

 What types of interesting problems can computers solve?

–Iteration, Recursion, and Feedback

•Repetitive loops

-Collection, Multiplicity, and Parallelism

•Efficient processing

–Adaptation, Learning, and Evolution

•Pattern recognition

vast.uccs.edu

Software Tools

- Useful trends in computational linguistics:
 - Probabilistic Models
 - Machine Learning

Digital Humanities

- Integrate technology into scholarly activity (in a non-gratuitous fashion)
- "knowledge-making, dispersal, and collection"
- Fun interdisciplinary collaboration!

vastuccs ec

Academic Forums

- Conferences
 - Digital Humanities
 - 2010 Meeting: http://dh2010.cch.kcl.ac.uk/
 - Chicago Colloquium on Digital Humanities and Computer Science
 - 2009 Meeting: <u>http://dhcs.iit.edu/</u>
- Journal
 - Literary and Linguistic Computing: <u>http://llc.oxfordjournals.org/</u>
- Societies
 - The Association for Literary and Linguistic Computing: <u>http://www.allc.org/</u>

vast.uccs.ed

- The Association for Computers in the Humanities: <u>http://www.ach.org/</u>
- The Society for Digital Humanities: <u>http://www.sdh-semi.org/</u>

A Prodigious Case Study

A Prodigious Case Study

- Forstall and Scheirer 2009¹
 - "Features From Frequency: Authorship and Stylistic Analysis Using Repetitive Sound"
- A foray into stylistics for literary study
 - Large survey of English, Latin and Greek literature using a common stylistic "tool".

vast.uccs.ec

1. Proc. of the 2009 Chicago Colloquium on Digital Humanities and Computer Science (forthcoming)

Inspiration...

"....He's got go, anyhow."

"Certainly, he's got go," said Gudrun. "In fact I've never seen a man that showed signs of so much. The unfortunate thing is, where does his *go* go to, what becomes of it?"

"Oh I know," said Ursula. "It goes in applying the latest appliances!"

Lawrence, Women in Love, Chpt. 4

vast uccs ec

Style Markers

- Function words
 - Zipf's law*:
 - "...in a corpus of natural language utterances, the frequency of any word is roughly inversely proportional to its rank in the frequency table"
 - The most frequently used words tend to be articles, adverbs, conjunctions, and pronouns
 - In practice, half of the words in a text occur just once (hapax legomena)

vast.uccs.ed

Style Markers

- n-grams
 - Character-level n-grams capture sound and word information;
 Phoneme-level n-grams capture pure sound information
 - Character-level and Phoneme-level n-grams behave the same way as Word-level n-grams:

$$P(\mathbf{h} \mid \mathbf{t}) = C(\mathbf{th}) / C(\mathbf{t})$$

- Generalizing:

$$P(e_n \mid e_{n-N+1}) = \frac{C(e_{n-N+1}^{n-1}e_n)}{C(e_{n-N+1}^{n-1})}$$

Functional n-gram

- We need a style marker to capture sound frequency
- Solution:
 - Recall the Zipfian distribution...
 - The n-grams of a text are ranked by frequency, but the features themselves remain the relative n-gram probabilities
- Functional n-grams relieve any need for feature vector normalization
- Functional n-grams are used as direct input for any supervised learning algorithm
 - In this work, we'll use SVM¹ and PCA²

vast.uccs.e

^{1.} J. Diederich, J. Kindermann, E. Leopold and G. Paass, "Authorship attribution with Support Vector Machines," *Applied Intelligence*, 19(1-2), pp. 109–123, 2003.

D. Holmes, M. Robertson, and R. Paez, "Stephen Crane and the New York Tribune: A Case Study in Traditional and Non-traditional Authorship Attribution," *Computers and the Humanities*, 35(3), pp. 315-331, 2001

Experiments: Authorship Attribution

- The experimental corpus
 - Novels
 - 2 English Novelists
 - Poetry
 - 11 Poets
 - 3 different periods represented
 - Romantic, Renaissance, and Classical
 - Overall, the amount of text is less per poet over a span of works than for a novelist's single long novel.

vast.uccs.ec

- 10-fold cross validation
 - Texts for each author split into *n* sub-samples, and randomly sampled

Experiments: The English Novel

• The English novel corpus

- Austen Sense and Sensibility, 14,731 lines, 118,542 words
- Lawrence Sons and Lovers, 21,978 lines, 160,035 words
- Lawrence Women in Love, 23,029 lines, 176,391 words

Experiments: The English Novel

Test	Function Words Training Vectors	Function Words % Misclassified	Functional Charlevel Bi-grams Training Vectors	Functional Charlevel Bi-grams % Misclassified	Functional Charlevel Tri-grams Training Vectors	Functional Charlevel Tri-grams % Misclassified
Lawrence vs. Austen	90	0.0	100	0.0575	100	0.0275

Test	Function Words	Function Words
	Training Vectors	% Misclassified
Lawrence vs. Lawrence	100	0.2125

All features have a vector length of 10

Experiments: Poetry

• The poetry corpus

- Byron Romantic British poet, 18,074 lines, 125,623 words
- Shelley Romantic British poet, 18,652 lines, 126,383 words
- Coleridge Romantic British poet, 2,745 lines, 17,614 words
- Keats Romantic British poet, 2,652 lines, 19,031 words
- Longfellow Romantic American poet, 6,081 lines, 31,065 words
- Poe Romantic American poet, 3,082 lines, 17,495 words
- Chapman Renaissance British poet, 8,872 lines, 71,253 words
- Milton Renaissance British poet, 10,608 lines, 79,720 words
- Shakespeare Renaissance British poet and 2,309 lines, 17,489 words

vast.uccs.ed

- Ovid Classical Latin poet, 11,998 lines, 80,328 words
- Vergil Classical Latin poet, 10,260 lines, 65,686 words

Experiments: English Poetry, The Challenge

You gentlemen, by dint of long seclusion From better company, have kept your own At Keswick, and through still continued fusion Of one another's minds at last have grown To deem, as a most logical conclusion, That poesy has wreaths for you alone. There is a narrowness in such a notion, Which makes me wish you'd change your lakes for ocean.

Byron, Don Juan 37-44

Now Time his dusky pennons o'er the scene Closes in steadfast darkness, and the past Fades from our charmed sight. My task is done: Thy lore is learned. Earth's wonders are thine own, With all the fear and all the hope they bring. My spells are past: the present now recurs. Ah me! a pathless wilderness remains Yet unsubdued by man's reclaiming hand.

Shelley, Queen Mab 138-145

vastuccs ec

Experiments: English Poetry, The Challenge

• Sample of functional phoneme and characterlevel bi-grams for Byron and Shelley

0.2694040669200 ah0 n 0.2634725496800 0.4419285274183 dh ah0 0.4683208701563 0.6186898642414 ao1 r 0.5843537414965 0.1369433323703 t uw1 0.1079038768422 0.2185688405797 eh1 n 0.2256212256212

0.478233034571063 he 0.482253521126761 0.253358036127837 an 0.253488372093023 0.298937784522003 re 0.304950495049505 0.155569782330346 ha 0.141408450704225 0.148111332007952 ou 0.126984126984127

Experiments: Poetry

Test	Function Words Vector Length	Function Words % Misclassified	Functional Charlevel Bi-grams Vector Length	Functional Charlevel Bi-grams % Misclassified	Functional Phoneme-level Bi-grams Vector Length	Functional Phoneme-level Bi-grams % Misclassified
Byron vs. Shelley	5	0.185	50	0.1775	20	0.1425
Chapman vs. Shakespeare	5	0.2025	70	0.1650	20	0.1025
Longfellow vs. Coleridge	5	0.0925	20	0.06	20	0.18
Longfellow vs. Poe	5	0.1350	20	0.005	10	0.1550
*Milton vs. Chapman	30	0.0675	70	0.0850	20	0.15
Shelley vs. Keats	20	0.20	-	-	18	0.15
Ovid vs. Vergil	50	0.0950	10	0.0375	-	-

50 training vectors used in all cases except Milton vs. Chapman, which used 100

vast.uccs.edu

ROC Analysis*

vast.uccs.edu

Meeting of the Association for Computational Linguistics," 2004

Post-ROC Analysis: Poetry

Test	Function Words Before	Function Words After	Functional Charlevel Bi-grams Before	Functional Charlevel Bi-grams After	Functional Phoneme-level Bi-grams Before	Functional Phoneme-level Bi-grams After
Byron vs. Shelley	0.185	0.15	0.1775	0.035	0.1425	0.10
Chapman vs. Shakespeare	0.2025	0.165	0.1650	0.0375	0.1025	0.0875
Longfellow vs. Coleridge	0.0925	0.0575	0.06	0.0375	0.18	0.115
Longfellow vs. Poe	0.1350	0.105	0.005	0.0025	0.1550	0.1375
Milton vs. Chapman	0.0675	0.04	0.0850	0.0525	0.15	0.12
Shelley vs. Keats	0.20	0.155	-	-	0.15	0.0725
Ovid vs. Vergil	0.0950	0.0575	0.0375	0.0125	-	_

% Misclassified

vast.uccs.edu

The Homeric Question

- What is the provenance of the *lliad* and *Odyssey*?
- How distinguishable are the poems from one another?
- How heterogeneous is each internally?

vast.uccs.ec

The Homeric Question

 "I have assumed the text commented upon is almost entirely Homer's, and the overall cohesiveness has been created by a master storyteller who was usually in full control of his technique."

Joseph Russo, Introduction to Od. XVII–XX (Heubeck et. al. 1992, 14)

 "It is now widely accepted that the poem had two main authors: the original poet whom critics call A, and one or more later poets known collectively as B."

— Manuel Fernández-Galiano, Introduction to Od. XXI (Ibid., 131)

vast.uccs.ed

Texts, Samples

	Books ca. 12,000– 30,000 chars.	10,000-char samples	5,000-char samples
lliad	24	57	114
Odyssey	24	41	82
Herodotus' <i>Histories</i>	64 samples of 15,000 chars.	96	192

n-grams common to all samples

functional n-grams

	n=2	n=3	n=4
5,000	176	115	7
10,000	257	402	66
book	323	926	354

	n=2	n=3	n=4
5,000	130	110	7
10,000	200	240	40
book	300	430	150

- Character n-grams can obviate the need for parsing in inflected languages*
- Frequent letter combinations pick out the moving parts of words, separating noun- and verb stems from their inflectional endings.

vast.uccs e

*V. Keselj et al. N-Gram-Based Author Profiles for Authorship Attribution, PACLING 2003

avδρ captures the noun, "man"

ll. 1.7 <mark>ἀνδρ</mark> ῶν	gen. pl.
ll.1.78 <mark>ἄνδρ</mark> α	acc. s.
ll.1.80 <mark>ἀνδρ</mark> ὶ	dat. s.
ll.1.146 <mark>ἀνδρ</mark> ῶν	gen. pl.
ΙΙ.1.151 <mark>ἀνδρ</mark> άσιν	dat. pl.
ll.1.172 <mark>ἀνδρ</mark> ῶν	gen. pl.
II.1.242 ἀνδροφόνοιο	compound = "slayer of men"
II.1.261 <mark>ἀνδρ</mark> άσιν	dat. pl.
II.1.266 <mark>ἀνδ</mark> ρῶν	gen. pl.
ΙΙ.1.334 <mark>ἀνδρ</mark> ῶν	gen. pl.
II.1.403 <mark>ἄνδρ</mark> ες	nom. pl.
II.1.442 ἀνδρῶν	gen. pl.
II.1.506 <mark>ἀνδ</mark> ρῶν	gen. pl.
II.1.544 <mark>ἀνδρ</mark> ω̂ν	gen. pl.
II.1.594 <mark>ἄνδ</mark> ρες	nom. pl.

vast.uccs.edu

olor captures the dative plural:

II.1.5 οἰωνοῖσί τε πασι
II.1.42 σοῖσι βέλεσσιν
II.1.45 ὤμοισιν
II.1.51 αὐτοῖσι
II.1.58 τοῖσι
II.1.68 τοῖσι
II.1.83 ἐν στήθεσσιν ἑοῖσι
II.1.87 Δαναοῖσι
et. al.

for all the birds by your arrows on his shoulders on them themselves among them among them in his heart to the Greeks

vast.uccs.eo

ov	μεν	μενο
αι	και	οισι
٧3	οντ	ν3μο
οσ	ισι	ισιν
13	EVO	ιзπз
то	σιν	ενοσ
OI	αλλ	ντεσ
β	αυτ	σθαι
٧٤	ουσ	οντε
να	3VO	οντο

vast.uccs.edu

Classification success rate

	full feature set		PCA	PCA pre-processing			functional feature set		
	n=2	n=3	n=4	n=2	n=3	n=4	n=2	n=3	n=4
5000	88%	87%	58%	87%	82%	57%	89%	87%	58%
10000	81%	95%	70%	94%	98%	73%	81%	98%	73%
book	88%	98%	98%	89%	98%	100%	88%	100%	98%

5000.2-gram

lliad	– red
Odyssey	– green
Herodotus	 black

vast.uccs.edu

10000.3-gram

lliad	– red
Odyssey	– green
Herodotus	 black

vast.uccs.edu

book.3-gram

Ongoing Work...

Intertextuality

"Any text is constructed as a mosaic of quotations; any text is the absorption and transformation of another."

The nature of these mosaics is widely varied:

- direct quotations representing a simple and overt intertextuality
- more complex transformations that are intentionally or subconsciously absorbed into a text

vast.uccs.ed

New tools in our box

- Functional n-grams apply here, but what about something that is almost opposite of functional?
- Consider elements that occur with lower probabilities:

 $(P_{low} < \Pr(word_1) < P_{high}) \dots (P_{low} < \Pr(word_2) < P_{high}) \dots (P_{low} < \Pr(word_n) < P_{high})$

New tools in our box

- How about meter?
 - In practice, the nuance of particular poets, or groups of poets, creates unique variations in meter, giving us a discriminating feature.
 - Add meter information as another dimension to a feature vector for learning
 - Should be useful for group classification

An intriguing text to analyze

- Paul the Deacon's 8th century poem Angustae Vitae
 - Strong connection to first-century Neoteric poetry
 - Hypothesis: Paul the Deacon had read
 Catullus
 - No historical record of this

Some clues...

Catullus II

PASSER, deliciae meae puellae, quicum ludere, quem in sinu tenere, cui primum digitum dare appetenti et acris solet incitare morsus cum desiderio meo nitenti carum nescio quid lubet iocari, credo ut, cum gravis acquiescet ardor, sit solaciolum sui dolaris, tecum ludere sicut ipsa possem et tristis animi levare curas!

Angustae Vitae, lines 1-4:

Angustae vitae fugiunt consortia Musae, Claustrorum septis nec habitare volunt, Per rosulenta magis cupiunt sed ludere prata, Pauperiem fugiunt, deliciasque colunt:

How will it turn out?

- Find out^{*} at DH 2010 in London:
 - http://dh2010.cch.kcl.ac.uk

vast.uccs.edu

*Forstall, Jacobson, and Scheirer, "Evidence of Intertextuality: Investigating Paul the Deacon's *Angustae Vitae*," to appear at DH 2010

Thank You! Questions???

