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Trouble with 
Computer Vision…

https://how-old.net/

https://www.captionbot.ai/

Nguyen et al. CVPR 2015



Learnability

Map of USA Highlighting South       BY-SA 3.0 BjarteSorensen

Imagine a newly 
arrived foreigner in the 
US… 

Could they recognize a 
person’s origin based 
on their speech? 



Learnability

What about the distinction 
between the Northeastern 
and the Mid-Western 
accents? 

Map of USA Highlighting Northeast       BY-SA 3.0 Wapcaplet

Map of USA Highlighting Midwest       BY-SA 3.0 Wapcaplet



Learnability

Or the distinction between 
the people who originated 
from different parts of 
Brooklyn? 

Brooklyn neighborhoods map       BY-SA 3.0 Peter Fitzgerald



The Practice of Teaching

How would we teach a new arrival to identify 
accents? 

1. Start with the easiest distinctions 
2. Proceed with finer distinctions 

We would never suggest that a novice learn all 
distinctions at the same time.



Supervised Learning
A “sink or swim” approach

No effort to tailor the learning to the human ability 
to learn from particular images. 
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Perceptual Annotation

Much information about human capacities can be 
of direct value for machine learning: 

 Some images are learnable, and some are not. 

 Learnability varies with experience. 

 Some things are easily learned, other things take   
 more time. 

Such detailed information reflecting human capacity is 
what we call a perceptual annotation.
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5. Resulting sparse solution 
makes predictions more 
consistent with human decisions

W. Scheirer, S. Anthony, K. Nakayama, and D.D. Cox, “Perceptual Annotation: Measuring Human Vision to Improve 
Computer Vision,” IEEE T-PAMI, vol. 36, no. 8, August 2014.
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Visual Psychophysics Using 
TestMyBrain.org



Visual Psychophysics

Careful management of stimulus 
construction, ordering and presentation 
allows for precise determination of 
perceptual thresholds. 

Canonical Early Example*: minimum 
threshold for stimulation of an individual 
photoreceptor. 

S. Hecht, S. Shlaer, M. Pirenne, “Energy, quanta and vision,” J. Gen. Physiol., 25 (1942), pp. 819–840.

Sam Anthony 
(Harvard Vision Lab)

Probe psychological and perceptual thresholds through 
controlled manipulation of stimuli.



Face Detection: Identical face stimuli shown to 
humans and computer algorithms. 

A selection of common algorithms, including 
commercial algorithms from Google and face.com 
(now part of Facebook). 

Large-scale web samples captured on the 
TestMyBrain platform.

vs.



TestMyBrain.org

L. Germine, K. Nakayama, B. Duchaine, C. Chabris, G. Chatterjee, and J. Wilmer, “Is the web as good as the lab? Comparable 
performance from web and lab in cognitive/perceptual experiments,” Psychonomic Bulletin & Review, vol. 19, pp. 847–857, 2012.



Behavioral Task

3 Alternative Forced Choice 



Behavioral Task
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Google Picasa

Face.com, mixed occluders

Face.com, solid occluders

vs.



Black occluders with Portilla-Simoncelli Backgrounds

J. Portilla and E. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” IJCV, vol. 40, no. 1, 2000.



Google Picasa, contoured background
Human, noise background*

Google Picasa, noise background

Face.com, noise background
Face.com, noise background

Human, 
contoured background*

N = 427, 1934 

* normalized
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Two-alternative Forced Choice Task

Brandon RichardWebster 
(Notre Dame CVRL)

M-alternative Forced Choice Task

B. RichardWebster, S. Anthony, and W. J. Scheirer, “PsyPhy: A Psychophysics Driven Evaluation Framework for Visual Recognition,” arXiv:1611.06448, 2017 

humans



Humans beat even the best algorithms. 

Algorithms have enormous problems 
with degradations like occlusion that 
people find trivial. 

Contoured image backgrounds reduce 
human performance; people are still 
much better.

vs. Summary



Perceptual Annotations

What information are we recording from a 
psychophysics experiment for machine 
learning training? 

1. Per Image Avg. Accuracy

2. Per Image Avg. Reaction Time



Perceptual Annotation for SVM



argmin
f

⇢
RI(f) :=

Z

Rd⇥N
L(x, y, f(x))P (x, y)

�

Ideal Risk Loss Function Joint Distribution

Classification Risk

A. Smola, “Learning with Kernels,” Ph.D. dissertation, Technische Universitat Berlin, Berlin, Germany, 1998.



Loss Functions

Typical Loss Function: Hinge Loss

A prediction during training is calculated as the output of a 
classifier multiplied by its label:

�(z) = max(0, 1� z)

�(z) = max(0, 1� z)

z = yf(x)

z = yf(x)

Non-linear nature of psychometric curves for visual recognition 
tasks suggests a much different model.



Human Weighted Loss

Besides data x and labels y, assume we also 
have a cost c for each training sample:

� (x, z) = max(0, (1� z) +M(x, z))

M(x, z) =

(
cx if z < 1

0, otherwise

where



c can take on one of two types of values: 
  A static penalty (e.g., 0 if a sample      
 doesn’t have a perceptual annotation) 

  A point on the psychometric curve (e.g.,      
 accuracy or reaction time) 

*All training samples do not require an 
associated perceptual annotation.

Human Weighted Loss



Optimization Problem

min
1

2
||w||2 + C

LX

l=1

� (xl, ylf(xl))

For the linear binary case, solve the following 
optimization problem:

Perceptual Annotations



Train a Face Classifier

 TestMyBrain 
faces

TestMyBrain 
foils

Hinge loss:

Margin



Re-weight TestMyBrain images

Re-weight 
TestMyBrain 

faces

Re-weight 
TestMyBrain 

foils



New boundary is farther from 
easy images and closer to 
tough ones 

Re-weight 
TestMyBrain 

faces

Re-weight 
TestMyBrain 

foils

Re-weight TestMyBrain images

Human-weighted loss:



Case Study: Face Detection



FDDB: Face Detection Dataset and Benchmark 

V. Jain and E. Learned-Miller, “FDDB: A Benchmark for Face Detection in Unconstrained Settings,” UMass Amherst Tech Report UM-CS-2010-009, 2010 

- 2,845 images with a total of 5,171 faces 
- A wide range of challenges including occlusions, difficult poses, and low    
  resolution and out-of-focus faces 
- The specification of face regions as elliptical regions 
- Both grayscale and color images 
- 10-fold cross-validation style testing



!
!
!
!

1 2 3 4 5 6 7 8 9 10
Fold

84

82

80

78

76

74

72

Ac
cu

ra
cy

AFLW, HWL (acc.), bio-inspired feat.!
AFLW, HL, bio-inspired feat.!
AFLW, HWL (acc.), HOG feat.!
AFLW, HL, HOG feat.

Simoncelli, HWL (RT), HOG feat.!
Simoncelli, HWL (acc.), HOG feat.!
Simoncelli, HL, HOG feat.

(a)

(b)

1 2 3 4 5 6 7 8 9 10
Fold

84
82

80
78
76
74
72

Ac
cu

ra
cy

90
88

86

(c)

84
82

80
78
76
74
72

Ac
cu

ra
cy

90
88

86

1 2 3 4 5 6 7 8 9 10
Fold

AFLW, HWL

Simoncelli, HWL

AFLW, HL

Simoncelli, HL

HL

HWL, acc.

HWL, RT

Hog, HL

HOG, HWL

Bio-inspired, HL

Bio-inspired, HWL

Effect: HL Replaced by HWL



0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 100" 200" 300" 400" 500" 600" 700"

Tr
ue

%P
os
i*
ve
%R
at
e%

False%Posi*ves%

Perc.%Annota*on,%Bio7Inspired"

Perc.%Annota*on,%HOG"

SURF"Cascade"

SVM,"φh,"HOG"

Jain"et"al."

ViolaAJones"

Subburaman"et"al."

FDDB Continuous Score Metric



Viola-Jones Perceptual Annotation

Example Detections



Using Human Brain Activity 
to Guide Machine Learning



fMRI
A more direct way to measure brain activity

Uses blood flow as a proxy for neuronal activations

Spatial resolution good enough 
to identify Brodmann areas

Non-invasive experimentation with humans



“Neurally-Weighted” Machine Learning

Ruth Fong (Oxford Visual 
Geometry Group)

R. Fong, W. J. Scheirer, and D. D. Cox, “Using Human Brain Activity 
to Guide Machine Learning,” to appear in Scientific Reports, 2017.

Collect fMRI measurements of human brain activity from subjects 
viewing images  

Infuse these data into the training process of an object 
recognition learning algorithm  

Goal: a solution that is more consistent with the human brain (like perceptual 
annotation)

After training, neurally-weighted classifiers 
are able to classify images without 
requiring additional neural data  



Phase 1: Derive per-stimulus activity 
weights from fMRI data
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Phase I: Derive per-stimulus “activity weights” from fMRI data Phase II: Train image classifier  

A. Collect per-stimulus activity
vectors

fMRI Images

B. Train clasifier on fMRI activity vectors

“stimulus does not
contain an animal”

decision boundary

“stimulus contains
 an animal”

C. Activity weights derived from distance
to decision boundary

D. Conventional image classifier training

E. Margins reweighted by activity data



Phase 2: Train Image Classifier
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fMRI Experimental Setup

01 Siemens MAGNETOM Trio       BY-SA 2.0 Image Editor

One adult subject viewed 1,386 color 500 × 500 pixel images of natural 
scenes, while being scanned in a 3.0 Tesla MRI machine 

Response amplitude values for 67,600 voxels were available for each 
image 

3,569 were labeled as being part of 1 
of 13 visual ROIs, including those in 
the early visual cortex 

7 ROIs for higher level 
visual processing

Data collected by the Gallant lab at UC Berkeley*

*D. E. Stansbury, T. Naselaris, and J. L. Gallant, “Natural Scene Statistics Account 
for the Representation of Scene Categories in Human Visual Cortex”, Neuron 79, 2013



Brain Areas

Figure Credit: Stansbury et al. Cell 2013

extrastriate body area (EBA) 
fusiform face area (FFA)  
lateral occipital cortex (LO)  
occipital face area (OFA)  
parahippocampal place area (PPA)  
retrosplenial cortex (RSC)  
transverse occipital sulcus (TOS)  
  



Machine Learning Experimental Setup

1. Set up 4 partitions that 
randomly split training (80%) 

and test (20%) data.

2. Set up 127 parallel 
experiments for the 127 
combinations of 7 ROIs.

2. Set up 5 balanced 
classification problems.

Partition 1 Partition 2 Partition 3 Partition 4 

1. EBA

127. EBA+FFA
+LO+OFA
+PPA+RSC

+TOS

31. EBA+FFA
+PPA… …

Problem 1 Problem 3 Problem 5… …



Side-by-side comparisons of the 
mean classification accuracy
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Mean error reductions gained when conditioning 
classifiers on brain activity from individual ROIs  
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Analysis of ROIs (HOG)
Analysis of ROIs (HOG)
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Analysis of ROIs (CNN)
Analysis of ROIs (CNN)
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Significance of All Combinations
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Wrapping Up…



Resources

Code:  

 https://github.com/coxlab/perceptual-annotation 

Data: 

 http://www.wjscheirer.com/datasets/perceptual_annotation/ 

TestMyBrain: 

 http://TestMyBrain.org



Questions?


